ironrock commited on
Commit
3269d0f
1 Parent(s): 519322f

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -1,82 +1,91 @@
1
  ---
2
- library_name: peft
 
3
  tags:
4
- - trl
5
- - dpo
6
  - DPO
7
  - WeniGPT
8
- - generated_from_trainer
9
  base_model: Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-merged
10
  model-index:
11
- - name: WeniGPT-Agents-Mistral-1.0.6-SFT-1.0.8-DPO
12
  results: []
 
13
  ---
14
 
15
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
- should probably proofread and complete it, then remove this comment. -->
17
 
18
- # WeniGPT-Agents-Mistral-1.0.6-SFT-1.0.8-DPO
 
19
 
20
- This model is a fine-tuned version of [Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-merged](https://huggingface.co/Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-merged) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.2005
23
- - Rewards/chosen: 1.7621
24
- - Rewards/rejected: -0.7248
25
- - Rewards/accuracies: 1.0
26
- - Rewards/margins: 2.4869
27
- - Logps/rejected: -271.5133
28
- - Logps/chosen: -102.9727
29
- - Logits/rejected: -1.8958
30
- - Logits/chosen: -1.8013
31
 
32
- ## Model description
33
 
34
- More information needed
35
 
36
- ## Intended uses & limitations
37
 
38
- More information needed
39
 
40
- ## Training and evaluation data
 
 
 
 
41
 
42
- More information needed
 
 
 
 
 
 
 
 
 
43
 
44
- ## Training procedure
 
 
 
45
 
46
  ### Training hyperparameters
47
 
48
  The following hyperparameters were used during training:
49
  - learning_rate: 5e-06
50
- - train_batch_size: 1
51
- - eval_batch_size: 1
52
- - seed: 42
53
- - distributed_type: multi-GPU
54
- - num_devices: 4
55
  - gradient_accumulation_steps: 2
 
56
  - total_train_batch_size: 8
57
- - total_eval_batch_size: 4
58
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
- - lr_scheduler_type: linear
60
- - lr_scheduler_warmup_ratio: 0.03
61
- - training_steps: 180
62
- - mixed_precision_training: Native AMP
63
 
64
  ### Training results
65
 
66
- | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
67
- |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
68
- | 0.5477 | 0.97 | 30 | 0.4843 | 0.4718 | -0.1109 | 0.8571 | 0.5827 | -269.4668 | -107.2735 | -1.8863 | -1.7949 |
69
- | 0.3542 | 1.94 | 60 | 0.3440 | 0.9609 | -0.2516 | 1.0 | 1.2125 | -269.9360 | -105.6431 | -1.8903 | -1.7979 |
70
- | 0.2892 | 2.9 | 90 | 0.2756 | 1.3199 | -0.4182 | 1.0 | 1.7381 | -270.4914 | -104.4467 | -1.8928 | -1.7995 |
71
- | 0.1858 | 3.87 | 120 | 0.2327 | 1.6010 | -0.5696 | 1.0 | 2.1706 | -270.9958 | -103.5094 | -1.8947 | -1.8008 |
72
- | 0.1811 | 4.84 | 150 | 0.2076 | 1.7245 | -0.6925 | 1.0 | 2.4170 | -271.4054 | -103.0979 | -1.8954 | -1.8010 |
73
- | 0.2065 | 5.81 | 180 | 0.2005 | 1.7621 | -0.7248 | 1.0 | 2.4869 | -271.5133 | -102.9727 | -1.8958 | -1.8013 |
74
-
75
-
76
  ### Framework versions
77
 
78
- - PEFT 0.10.0
79
- - Transformers 4.38.2
80
- - Pytorch 2.1.0+cu118
81
- - Datasets 2.18.0
82
- - Tokenizers 0.15.2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ library_name: "trl"
4
  tags:
 
 
5
  - DPO
6
  - WeniGPT
 
7
  base_model: Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-merged
8
  model-index:
9
+ - name: Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-1.0.8-DPO
10
  results: []
11
+ language: ['pt']
12
  ---
13
 
14
+ # Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-1.0.8-DPO
 
15
 
16
+ This model is a fine-tuned version of [Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-merged] on the dataset Weni/wenigpt-agent-dpo-1.0.0 with the DPO trainer. It is part of the WeniGPT project for [Weni](https://weni.ai/).
17
+ Description: Experiment on DPO with other hyperparameters and best SFT model of WeniGPT
18
 
 
19
  It achieves the following results on the evaluation set:
20
+ {'eval_loss': 0.20048503577709198, 'eval_runtime': 9.9205, 'eval_samples_per_second': 2.822, 'eval_steps_per_second': 0.706, 'eval_rewards/chosen': 1.7620631456375122, 'eval_rewards/rejected': -0.7248173952102661, 'eval_rewards/accuracies': 1.0, 'eval_rewards/margins': 2.4868807792663574, 'eval_logps/rejected': -271.5132751464844, 'eval_logps/chosen': -102.97270202636719, 'eval_logits/rejected': -1.8957865238189697, 'eval_logits/chosen': -1.8012962341308594, 'epoch': 5.81}
 
 
 
 
 
 
 
 
21
 
22
+ ## Intended uses & limitations
23
 
24
+ This model has not been trained to avoid specific intructions.
25
 
26
+ ## Training procedure
27
 
28
+ Finetuning was done on the model Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-merged with the following prompt:
29
 
30
+ ```
31
+ ---------------------
32
+ System_prompt:
33
+ Agora você se chama {name}, você é {occupation} e seu objetivo é {chatbot_goal}. O adjetivo que mais define a sua personalidade é {adjective} e você se comporta da seguinte forma:
34
+ {instructions_formatted}
35
 
36
+ {context_statement}
37
+
38
+ Lista de requisitos:
39
+ - Responda de forma natural, mas nunca fale sobre um assunto fora do contexto.
40
+ - Nunca traga informações do seu próprio conhecimento.
41
+ - Repito é crucial que você responda usando apenas informações do contexto.
42
+ - Nunca mencione o contexto fornecido.
43
+ - Nunca mencione a pergunta fornecida.
44
+ - Gere a resposta mais útil possível para a pergunta usando informações do conexto acima.
45
+ - Nunca elabore sobre o porque e como você fez a tarefa, apenas responda.
46
 
47
+
48
+ ---------------------
49
+
50
+ ```
51
 
52
  ### Training hyperparameters
53
 
54
  The following hyperparameters were used during training:
55
  - learning_rate: 5e-06
56
+ - per_device_train_batch_size: 1
57
+ - per_device_eval_batch_size: 1
 
 
 
58
  - gradient_accumulation_steps: 2
59
+ - num_gpus: 4
60
  - total_train_batch_size: 8
61
+ - optimizer: AdamW
62
+ - lr_scheduler_type: cosine
63
+ - num_steps: 180
64
+ - quantization_type: bitsandbytes
65
+ - LoRA: ("\n - bits: 4\n - use_exllama: True\n - device_map: auto\n - use_cache: False\n - lora_r: 8\n - lora_alpha: 16\n - lora_dropout: 0.05\n - bias: none\n - target_modules: ['v_proj', 'q_proj']\n - task_type: CAUSAL_LM",)
 
66
 
67
  ### Training results
68
 
 
 
 
 
 
 
 
 
 
 
69
  ### Framework versions
70
 
71
+ - transformers==4.38.2
72
+ - datasets==2.18.0
73
+ - peft==0.10.0
74
+ - safetensors==0.4.2
75
+ - evaluate==0.4.1
76
+ - bitsandbytes==0.43
77
+ - huggingface_hub==0.22.2
78
+ - seqeval==1.2.2
79
+ - optimum==1.18.1
80
+ - auto-gptq==0.7.1
81
+ - gpustat==1.1.1
82
+ - deepspeed==0.14.0
83
+ - wandb==0.16.6
84
+ - trl==0.8.1
85
+ - accelerate==0.29.2
86
+ - coloredlogs==15.0.1
87
+ - traitlets==5.14.2
88
+ - autoawq@https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.4/autoawq-0.2.4+cu118-cp310-cp310-linux_x86_64.whl
89
+
90
+ ### Hardware
91
+ - Cloud provided: runpod.io
checkpoint-180/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-merged
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-180/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-merged",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-180/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8e04b6837c63d0518aab621c468ca20a97c1e37060cf8cdc4141c1bbef0825b
3
+ size 13648432
checkpoint-180/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:951bedc053daaa58558d748fea1f931a54c2182686f0138e07b71ea7fd47fe80
3
+ size 27370618
checkpoint-180/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae78313eb528c8d3695eebaf4de3539bd0a0bc6ee18c66af1ee183442f1758a0
3
+ size 15024
checkpoint-180/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b38031f60d9e88601d369ef46bcdcf2b5b03f2cb4ba93853bcb2328df7ebb7c
3
+ size 15024
checkpoint-180/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f58092375c93d237cd0e3149aecfbf83e2acdae46279e07a32920d01cb507e64
3
+ size 15024
checkpoint-180/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83cd4bbff9962da7ec6787fcea8d65df7096917f9a5902e249ba7aee8887fe5f
3
+ size 15024
checkpoint-180/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74f15868c98428b757deb41ceef3036d052c50d320ff1d3c76314d699ef0babc
3
+ size 1064
checkpoint-180/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-180/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-180/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
checkpoint-180/tokenizer_config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% for message in messages %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'system' %}{{ '<<SYS>>\\n' + message['content'] + '\\n<</SYS>>\\n\\n' }}{% elif message['role'] == 'assistant' %}{{ ' ' + message['content'] + ' ' + eos_token }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "max_lenght": 8192,
37
+ "max_length": 8192,
38
+ "model_max_length": 1000000000000000019884624838656,
39
+ "pad_token": "<unk>",
40
+ "padding": true,
41
+ "sp_model_kwargs": {},
42
+ "spaces_between_special_tokens": false,
43
+ "stride": 0,
44
+ "tokenizer_class": "LlamaTokenizer",
45
+ "truncation_side": "right",
46
+ "truncation_strategy": "longest_first",
47
+ "unk_token": "<unk>",
48
+ "use_default_system_prompt": false
49
+ }
checkpoint-180/trainer_state.json ADDED
@@ -0,0 +1,387 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.20048503577709198,
3
+ "best_model_checkpoint": "./mistral/20-04-24-Weni-WeniGPT-Agents-Mistral-1.0.6-SFT-1.0.8-DPO_Experiment on DPO with other hyperparameters and best SFT model of WeniGPT-2_max_steps-180_batch_8_2024-04-20_ppid_9/checkpoint-180",
4
+ "epoch": 5.806451612903226,
5
+ "eval_steps": 30,
6
+ "global_step": 180,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.32,
13
+ "grad_norm": 27.100269317626953,
14
+ "learning_rate": 5e-06,
15
+ "logits/chosen": -1.7583906650543213,
16
+ "logits/rejected": -1.8312015533447266,
17
+ "logps/chosen": -173.15086364746094,
18
+ "logps/rejected": -269.08062744140625,
19
+ "loss": 0.69,
20
+ "rewards/accuracies": 0.4000000059604645,
21
+ "rewards/chosen": 0.01006038673222065,
22
+ "rewards/margins": 0.011446094140410423,
23
+ "rewards/rejected": -0.0013857081066817045,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.65,
28
+ "grad_norm": NaN,
29
+ "learning_rate": 4.741379310344828e-06,
30
+ "logits/chosen": -1.7850843667984009,
31
+ "logits/rejected": -1.81415593624115,
32
+ "logps/chosen": -196.91897583007812,
33
+ "logps/rejected": -205.7848663330078,
34
+ "loss": 0.6264,
35
+ "rewards/accuracies": 0.8500000238418579,
36
+ "rewards/chosen": 0.17185011506080627,
37
+ "rewards/margins": 0.14982673525810242,
38
+ "rewards/rejected": 0.022023344412446022,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.97,
43
+ "grad_norm": 23.862794876098633,
44
+ "learning_rate": 4.454022988505747e-06,
45
+ "logits/chosen": -1.7745271921157837,
46
+ "logits/rejected": -1.8100026845932007,
47
+ "logps/chosen": -197.96493530273438,
48
+ "logps/rejected": -184.85069274902344,
49
+ "loss": 0.5477,
50
+ "rewards/accuracies": 0.75,
51
+ "rewards/chosen": 0.3463248908519745,
52
+ "rewards/margins": 0.35388293862342834,
53
+ "rewards/rejected": -0.007558024022728205,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.97,
58
+ "eval_logits/chosen": -1.7948826551437378,
59
+ "eval_logits/rejected": -1.8862664699554443,
60
+ "eval_logps/chosen": -107.27352142333984,
61
+ "eval_logps/rejected": -269.4668273925781,
62
+ "eval_loss": 0.48426297307014465,
63
+ "eval_rewards/accuracies": 0.8571428656578064,
64
+ "eval_rewards/chosen": 0.4718170166015625,
65
+ "eval_rewards/margins": 0.5826946496963501,
66
+ "eval_rewards/rejected": -0.1108776405453682,
67
+ "eval_runtime": 9.9214,
68
+ "eval_samples_per_second": 2.822,
69
+ "eval_steps_per_second": 0.706,
70
+ "step": 30
71
+ },
72
+ {
73
+ "epoch": 1.29,
74
+ "grad_norm": 33.898590087890625,
75
+ "learning_rate": 4.166666666666667e-06,
76
+ "logits/chosen": -1.7890510559082031,
77
+ "logits/rejected": -1.8475368022918701,
78
+ "logps/chosen": -193.50033569335938,
79
+ "logps/rejected": -206.31741333007812,
80
+ "loss": 0.4661,
81
+ "rewards/accuracies": 0.8999999761581421,
82
+ "rewards/chosen": 0.4587056636810303,
83
+ "rewards/margins": 0.5034217238426208,
84
+ "rewards/rejected": -0.04471604526042938,
85
+ "step": 40
86
+ },
87
+ {
88
+ "epoch": 1.61,
89
+ "grad_norm": 29.36012840270996,
90
+ "learning_rate": 3.8793103448275865e-06,
91
+ "logits/chosen": -1.804456353187561,
92
+ "logits/rejected": -1.8586517572402954,
93
+ "logps/chosen": -136.4575958251953,
94
+ "logps/rejected": -212.65231323242188,
95
+ "loss": 0.4418,
96
+ "rewards/accuracies": 1.0,
97
+ "rewards/chosen": 0.8421177864074707,
98
+ "rewards/margins": 0.988998293876648,
99
+ "rewards/rejected": -0.146880641579628,
100
+ "step": 50
101
+ },
102
+ {
103
+ "epoch": 1.94,
104
+ "grad_norm": 25.15074348449707,
105
+ "learning_rate": 3.5919540229885056e-06,
106
+ "logits/chosen": -1.8009055852890015,
107
+ "logits/rejected": -1.8550602197647095,
108
+ "logps/chosen": -145.14044189453125,
109
+ "logps/rejected": -265.5760192871094,
110
+ "loss": 0.3542,
111
+ "rewards/accuracies": 1.0,
112
+ "rewards/chosen": 0.742743730545044,
113
+ "rewards/margins": 1.1478015184402466,
114
+ "rewards/rejected": -0.4050576686859131,
115
+ "step": 60
116
+ },
117
+ {
118
+ "epoch": 1.94,
119
+ "eval_logits/chosen": -1.7979233264923096,
120
+ "eval_logits/rejected": -1.8902829885482788,
121
+ "eval_logps/chosen": -105.64314270019531,
122
+ "eval_logps/rejected": -269.93597412109375,
123
+ "eval_loss": 0.344027042388916,
124
+ "eval_rewards/accuracies": 1.0,
125
+ "eval_rewards/chosen": 0.96092689037323,
126
+ "eval_rewards/margins": 1.212537407875061,
127
+ "eval_rewards/rejected": -0.2516104578971863,
128
+ "eval_runtime": 9.9306,
129
+ "eval_samples_per_second": 2.82,
130
+ "eval_steps_per_second": 0.705,
131
+ "step": 60
132
+ },
133
+ {
134
+ "epoch": 2.26,
135
+ "grad_norm": 16.264854431152344,
136
+ "learning_rate": 3.3045977011494256e-06,
137
+ "logits/chosen": -1.8283793926239014,
138
+ "logits/rejected": -1.8581088781356812,
139
+ "logps/chosen": -245.49520874023438,
140
+ "logps/rejected": -240.85055541992188,
141
+ "loss": 0.3242,
142
+ "rewards/accuracies": 0.8999999761581421,
143
+ "rewards/chosen": 0.9433773756027222,
144
+ "rewards/margins": 0.9048371315002441,
145
+ "rewards/rejected": 0.0385403148829937,
146
+ "step": 70
147
+ },
148
+ {
149
+ "epoch": 2.58,
150
+ "grad_norm": 18.855249404907227,
151
+ "learning_rate": 3.017241379310345e-06,
152
+ "logits/chosen": -1.912719964981079,
153
+ "logits/rejected": -1.9267578125,
154
+ "logps/chosen": -184.6862030029297,
155
+ "logps/rejected": -150.09349060058594,
156
+ "loss": 0.3063,
157
+ "rewards/accuracies": 0.949999988079071,
158
+ "rewards/chosen": 0.9958856701850891,
159
+ "rewards/margins": 1.2241456508636475,
160
+ "rewards/rejected": -0.2282601296901703,
161
+ "step": 80
162
+ },
163
+ {
164
+ "epoch": 2.9,
165
+ "grad_norm": 18.644786834716797,
166
+ "learning_rate": 2.729885057471265e-06,
167
+ "logits/chosen": -1.8041893243789673,
168
+ "logits/rejected": -1.8382984399795532,
169
+ "logps/chosen": -122.60682678222656,
170
+ "logps/rejected": -190.001220703125,
171
+ "loss": 0.2892,
172
+ "rewards/accuracies": 0.949999988079071,
173
+ "rewards/chosen": 1.1825361251831055,
174
+ "rewards/margins": 1.4003632068634033,
175
+ "rewards/rejected": -0.2178269922733307,
176
+ "step": 90
177
+ },
178
+ {
179
+ "epoch": 2.9,
180
+ "eval_logits/chosen": -1.799451470375061,
181
+ "eval_logits/rejected": -1.8927640914916992,
182
+ "eval_logps/chosen": -104.44667053222656,
183
+ "eval_logps/rejected": -270.4913635253906,
184
+ "eval_loss": 0.275594562292099,
185
+ "eval_rewards/accuracies": 1.0,
186
+ "eval_rewards/chosen": 1.319871187210083,
187
+ "eval_rewards/margins": 1.7381019592285156,
188
+ "eval_rewards/rejected": -0.4182307720184326,
189
+ "eval_runtime": 9.9268,
190
+ "eval_samples_per_second": 2.821,
191
+ "eval_steps_per_second": 0.705,
192
+ "step": 90
193
+ },
194
+ {
195
+ "epoch": 3.23,
196
+ "grad_norm": 12.1031494140625,
197
+ "learning_rate": 2.4425287356321844e-06,
198
+ "logits/chosen": -1.775871992111206,
199
+ "logits/rejected": -1.8304792642593384,
200
+ "logps/chosen": -152.18081665039062,
201
+ "logps/rejected": -200.20614624023438,
202
+ "loss": 0.2436,
203
+ "rewards/accuracies": 1.0,
204
+ "rewards/chosen": 1.6016706228256226,
205
+ "rewards/margins": 1.9426767826080322,
206
+ "rewards/rejected": -0.3410060703754425,
207
+ "step": 100
208
+ },
209
+ {
210
+ "epoch": 3.55,
211
+ "grad_norm": 15.167205810546875,
212
+ "learning_rate": 2.1551724137931035e-06,
213
+ "logits/chosen": -1.7159019708633423,
214
+ "logits/rejected": -1.8178460597991943,
215
+ "logps/chosen": -141.62574768066406,
216
+ "logps/rejected": -293.3615417480469,
217
+ "loss": 0.2007,
218
+ "rewards/accuracies": 1.0,
219
+ "rewards/chosen": 1.7044894695281982,
220
+ "rewards/margins": 2.599806308746338,
221
+ "rewards/rejected": -0.8953168988227844,
222
+ "step": 110
223
+ },
224
+ {
225
+ "epoch": 3.87,
226
+ "grad_norm": 15.17064094543457,
227
+ "learning_rate": 1.8678160919540231e-06,
228
+ "logits/chosen": -1.8141412734985352,
229
+ "logits/rejected": -1.881119728088379,
230
+ "logps/chosen": -113.6499252319336,
231
+ "logps/rejected": -246.5932159423828,
232
+ "loss": 0.1858,
233
+ "rewards/accuracies": 0.949999988079071,
234
+ "rewards/chosen": 1.5452262163162231,
235
+ "rewards/margins": 2.416726589202881,
236
+ "rewards/rejected": -0.8715003728866577,
237
+ "step": 120
238
+ },
239
+ {
240
+ "epoch": 3.87,
241
+ "eval_logits/chosen": -1.8007782697677612,
242
+ "eval_logits/rejected": -1.8947203159332275,
243
+ "eval_logps/chosen": -103.50943756103516,
244
+ "eval_logps/rejected": -270.995849609375,
245
+ "eval_loss": 0.232688769698143,
246
+ "eval_rewards/accuracies": 1.0,
247
+ "eval_rewards/chosen": 1.60104238986969,
248
+ "eval_rewards/margins": 2.170628309249878,
249
+ "eval_rewards/rejected": -0.5695859789848328,
250
+ "eval_runtime": 9.9278,
251
+ "eval_samples_per_second": 2.82,
252
+ "eval_steps_per_second": 0.705,
253
+ "step": 120
254
+ },
255
+ {
256
+ "epoch": 4.19,
257
+ "grad_norm": 9.949838638305664,
258
+ "learning_rate": 1.5804597701149427e-06,
259
+ "logits/chosen": -1.7835006713867188,
260
+ "logits/rejected": -1.8571557998657227,
261
+ "logps/chosen": -184.62295532226562,
262
+ "logps/rejected": -249.9383544921875,
263
+ "loss": 0.2255,
264
+ "rewards/accuracies": 1.0,
265
+ "rewards/chosen": 1.7701829671859741,
266
+ "rewards/margins": 2.433096408843994,
267
+ "rewards/rejected": -0.6629135012626648,
268
+ "step": 130
269
+ },
270
+ {
271
+ "epoch": 4.52,
272
+ "grad_norm": 10.975859642028809,
273
+ "learning_rate": 1.2931034482758623e-06,
274
+ "logits/chosen": -1.8018295764923096,
275
+ "logits/rejected": -1.861405372619629,
276
+ "logps/chosen": -129.60470581054688,
277
+ "logps/rejected": -241.1371612548828,
278
+ "loss": 0.1645,
279
+ "rewards/accuracies": 1.0,
280
+ "rewards/chosen": 1.7705247402191162,
281
+ "rewards/margins": 2.5183393955230713,
282
+ "rewards/rejected": -0.7478145956993103,
283
+ "step": 140
284
+ },
285
+ {
286
+ "epoch": 4.84,
287
+ "grad_norm": 12.812362670898438,
288
+ "learning_rate": 1.0057471264367817e-06,
289
+ "logits/chosen": -1.82421875,
290
+ "logits/rejected": -1.8583450317382812,
291
+ "logps/chosen": -201.688232421875,
292
+ "logps/rejected": -229.2138671875,
293
+ "loss": 0.1811,
294
+ "rewards/accuracies": 1.0,
295
+ "rewards/chosen": 1.555559515953064,
296
+ "rewards/margins": 2.371445417404175,
297
+ "rewards/rejected": -0.8158857226371765,
298
+ "step": 150
299
+ },
300
+ {
301
+ "epoch": 4.84,
302
+ "eval_logits/chosen": -1.8010179996490479,
303
+ "eval_logits/rejected": -1.8953866958618164,
304
+ "eval_logps/chosen": -103.09788513183594,
305
+ "eval_logps/rejected": -271.4054260253906,
306
+ "eval_loss": 0.2075897753238678,
307
+ "eval_rewards/accuracies": 1.0,
308
+ "eval_rewards/chosen": 1.7245090007781982,
309
+ "eval_rewards/margins": 2.4169600009918213,
310
+ "eval_rewards/rejected": -0.6924509406089783,
311
+ "eval_runtime": 9.9225,
312
+ "eval_samples_per_second": 2.822,
313
+ "eval_steps_per_second": 0.705,
314
+ "step": 150
315
+ },
316
+ {
317
+ "epoch": 5.16,
318
+ "grad_norm": 23.902271270751953,
319
+ "learning_rate": 7.183908045977011e-07,
320
+ "logits/chosen": -1.779550313949585,
321
+ "logits/rejected": -1.8266932964324951,
322
+ "logps/chosen": -145.10794067382812,
323
+ "logps/rejected": -194.99497985839844,
324
+ "loss": 0.182,
325
+ "rewards/accuracies": 1.0,
326
+ "rewards/chosen": 1.5958274602890015,
327
+ "rewards/margins": 2.0814337730407715,
328
+ "rewards/rejected": -0.48560643196105957,
329
+ "step": 160
330
+ },
331
+ {
332
+ "epoch": 5.48,
333
+ "grad_norm": 25.761934280395508,
334
+ "learning_rate": 4.3103448275862073e-07,
335
+ "logits/chosen": -1.8421766757965088,
336
+ "logits/rejected": -1.8947057723999023,
337
+ "logps/chosen": -162.1377716064453,
338
+ "logps/rejected": -238.0432586669922,
339
+ "loss": 0.1725,
340
+ "rewards/accuracies": 1.0,
341
+ "rewards/chosen": 1.420178771018982,
342
+ "rewards/margins": 2.578826427459717,
343
+ "rewards/rejected": -1.1586474180221558,
344
+ "step": 170
345
+ },
346
+ {
347
+ "epoch": 5.81,
348
+ "grad_norm": 22.726856231689453,
349
+ "learning_rate": 1.4367816091954023e-07,
350
+ "logits/chosen": -1.8062843084335327,
351
+ "logits/rejected": -1.8762874603271484,
352
+ "logps/chosen": -147.4128875732422,
353
+ "logps/rejected": -218.22811889648438,
354
+ "loss": 0.2065,
355
+ "rewards/accuracies": 0.949999988079071,
356
+ "rewards/chosen": 1.3966058492660522,
357
+ "rewards/margins": 2.1112942695617676,
358
+ "rewards/rejected": -0.7146884202957153,
359
+ "step": 180
360
+ },
361
+ {
362
+ "epoch": 5.81,
363
+ "eval_logits/chosen": -1.8012962341308594,
364
+ "eval_logits/rejected": -1.8957865238189697,
365
+ "eval_logps/chosen": -102.97270202636719,
366
+ "eval_logps/rejected": -271.5132751464844,
367
+ "eval_loss": 0.20048503577709198,
368
+ "eval_rewards/accuracies": 1.0,
369
+ "eval_rewards/chosen": 1.7620631456375122,
370
+ "eval_rewards/margins": 2.4868807792663574,
371
+ "eval_rewards/rejected": -0.7248173952102661,
372
+ "eval_runtime": 9.9214,
373
+ "eval_samples_per_second": 2.822,
374
+ "eval_steps_per_second": 0.706,
375
+ "step": 180
376
+ }
377
+ ],
378
+ "logging_steps": 10,
379
+ "max_steps": 180,
380
+ "num_input_tokens_seen": 0,
381
+ "num_train_epochs": 6,
382
+ "save_steps": 90,
383
+ "total_flos": 0.0,
384
+ "train_batch_size": 1,
385
+ "trial_name": null,
386
+ "trial_params": null
387
+ }
checkpoint-180/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddb616965f243d067df3d0989701364bac00b0a89b6fb3bed8e9fc7ddb137e5f
3
+ size 5304
checkpoint-90/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-merged
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-90/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-merged",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-90/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3dedcf22ffa9bcd052c69a81ed2bfaed4a6dc22901a7c2fdace542f0cfb46744
3
+ size 13648432
checkpoint-90/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0425b4a2d9194f6dec707e6b3e109d1a9291b736fce3a4e87cb806968dfe249c
3
+ size 27370618
checkpoint-90/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:418a5f105ae834c3075024076916b2a9475918fe034c12d0dd5b6d91f1aba467
3
+ size 15024
checkpoint-90/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e07ace389d24bc1307b74f42a1e7b8f0117b0db853e2df64ff3f15cb92916a2
3
+ size 15024
checkpoint-90/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da6a990f346d7014dffb28fa2bc7d3b890bd3c53712503fce3656da48d3d6e50
3
+ size 15024
checkpoint-90/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e95f356ca38179b05993f55daece0223e96fa10b9a1b9ea2102a739211333f63
3
+ size 15024
checkpoint-90/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e83e76d56bab031e020dbb8db0e99d785019f52c86d705dd2275cde1e9302a8d
3
+ size 1064
checkpoint-90/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-90/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-90/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
checkpoint-90/tokenizer_config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% for message in messages %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'system' %}{{ '<<SYS>>\\n' + message['content'] + '\\n<</SYS>>\\n\\n' }}{% elif message['role'] == 'assistant' %}{{ ' ' + message['content'] + ' ' + eos_token }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "max_lenght": 8192,
37
+ "max_length": 8192,
38
+ "model_max_length": 1000000000000000019884624838656,
39
+ "pad_token": "<unk>",
40
+ "padding": true,
41
+ "sp_model_kwargs": {},
42
+ "spaces_between_special_tokens": false,
43
+ "stride": 0,
44
+ "tokenizer_class": "LlamaTokenizer",
45
+ "truncation_side": "right",
46
+ "truncation_strategy": "longest_first",
47
+ "unk_token": "<unk>",
48
+ "use_default_system_prompt": false
49
+ }
checkpoint-90/trainer_state.json ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.275594562292099,
3
+ "best_model_checkpoint": "./mistral/20-04-24-Weni-WeniGPT-Agents-Mistral-1.0.6-SFT-1.0.8-DPO_Experiment on DPO with other hyperparameters and best SFT model of WeniGPT-2_max_steps-180_batch_8_2024-04-20_ppid_9/checkpoint-90",
4
+ "epoch": 2.903225806451613,
5
+ "eval_steps": 30,
6
+ "global_step": 90,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.32,
13
+ "grad_norm": 27.100269317626953,
14
+ "learning_rate": 5e-06,
15
+ "logits/chosen": -1.7583906650543213,
16
+ "logits/rejected": -1.8312015533447266,
17
+ "logps/chosen": -173.15086364746094,
18
+ "logps/rejected": -269.08062744140625,
19
+ "loss": 0.69,
20
+ "rewards/accuracies": 0.4000000059604645,
21
+ "rewards/chosen": 0.01006038673222065,
22
+ "rewards/margins": 0.011446094140410423,
23
+ "rewards/rejected": -0.0013857081066817045,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.65,
28
+ "grad_norm": NaN,
29
+ "learning_rate": 4.741379310344828e-06,
30
+ "logits/chosen": -1.7850843667984009,
31
+ "logits/rejected": -1.81415593624115,
32
+ "logps/chosen": -196.91897583007812,
33
+ "logps/rejected": -205.7848663330078,
34
+ "loss": 0.6264,
35
+ "rewards/accuracies": 0.8500000238418579,
36
+ "rewards/chosen": 0.17185011506080627,
37
+ "rewards/margins": 0.14982673525810242,
38
+ "rewards/rejected": 0.022023344412446022,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.97,
43
+ "grad_norm": 23.862794876098633,
44
+ "learning_rate": 4.454022988505747e-06,
45
+ "logits/chosen": -1.7745271921157837,
46
+ "logits/rejected": -1.8100026845932007,
47
+ "logps/chosen": -197.96493530273438,
48
+ "logps/rejected": -184.85069274902344,
49
+ "loss": 0.5477,
50
+ "rewards/accuracies": 0.75,
51
+ "rewards/chosen": 0.3463248908519745,
52
+ "rewards/margins": 0.35388293862342834,
53
+ "rewards/rejected": -0.007558024022728205,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.97,
58
+ "eval_logits/chosen": -1.7948826551437378,
59
+ "eval_logits/rejected": -1.8862664699554443,
60
+ "eval_logps/chosen": -107.27352142333984,
61
+ "eval_logps/rejected": -269.4668273925781,
62
+ "eval_loss": 0.48426297307014465,
63
+ "eval_rewards/accuracies": 0.8571428656578064,
64
+ "eval_rewards/chosen": 0.4718170166015625,
65
+ "eval_rewards/margins": 0.5826946496963501,
66
+ "eval_rewards/rejected": -0.1108776405453682,
67
+ "eval_runtime": 9.9214,
68
+ "eval_samples_per_second": 2.822,
69
+ "eval_steps_per_second": 0.706,
70
+ "step": 30
71
+ },
72
+ {
73
+ "epoch": 1.29,
74
+ "grad_norm": 33.898590087890625,
75
+ "learning_rate": 4.166666666666667e-06,
76
+ "logits/chosen": -1.7890510559082031,
77
+ "logits/rejected": -1.8475368022918701,
78
+ "logps/chosen": -193.50033569335938,
79
+ "logps/rejected": -206.31741333007812,
80
+ "loss": 0.4661,
81
+ "rewards/accuracies": 0.8999999761581421,
82
+ "rewards/chosen": 0.4587056636810303,
83
+ "rewards/margins": 0.5034217238426208,
84
+ "rewards/rejected": -0.04471604526042938,
85
+ "step": 40
86
+ },
87
+ {
88
+ "epoch": 1.61,
89
+ "grad_norm": 29.36012840270996,
90
+ "learning_rate": 3.8793103448275865e-06,
91
+ "logits/chosen": -1.804456353187561,
92
+ "logits/rejected": -1.8586517572402954,
93
+ "logps/chosen": -136.4575958251953,
94
+ "logps/rejected": -212.65231323242188,
95
+ "loss": 0.4418,
96
+ "rewards/accuracies": 1.0,
97
+ "rewards/chosen": 0.8421177864074707,
98
+ "rewards/margins": 0.988998293876648,
99
+ "rewards/rejected": -0.146880641579628,
100
+ "step": 50
101
+ },
102
+ {
103
+ "epoch": 1.94,
104
+ "grad_norm": 25.15074348449707,
105
+ "learning_rate": 3.5919540229885056e-06,
106
+ "logits/chosen": -1.8009055852890015,
107
+ "logits/rejected": -1.8550602197647095,
108
+ "logps/chosen": -145.14044189453125,
109
+ "logps/rejected": -265.5760192871094,
110
+ "loss": 0.3542,
111
+ "rewards/accuracies": 1.0,
112
+ "rewards/chosen": 0.742743730545044,
113
+ "rewards/margins": 1.1478015184402466,
114
+ "rewards/rejected": -0.4050576686859131,
115
+ "step": 60
116
+ },
117
+ {
118
+ "epoch": 1.94,
119
+ "eval_logits/chosen": -1.7979233264923096,
120
+ "eval_logits/rejected": -1.8902829885482788,
121
+ "eval_logps/chosen": -105.64314270019531,
122
+ "eval_logps/rejected": -269.93597412109375,
123
+ "eval_loss": 0.344027042388916,
124
+ "eval_rewards/accuracies": 1.0,
125
+ "eval_rewards/chosen": 0.96092689037323,
126
+ "eval_rewards/margins": 1.212537407875061,
127
+ "eval_rewards/rejected": -0.2516104578971863,
128
+ "eval_runtime": 9.9306,
129
+ "eval_samples_per_second": 2.82,
130
+ "eval_steps_per_second": 0.705,
131
+ "step": 60
132
+ },
133
+ {
134
+ "epoch": 2.26,
135
+ "grad_norm": 16.264854431152344,
136
+ "learning_rate": 3.3045977011494256e-06,
137
+ "logits/chosen": -1.8283793926239014,
138
+ "logits/rejected": -1.8581088781356812,
139
+ "logps/chosen": -245.49520874023438,
140
+ "logps/rejected": -240.85055541992188,
141
+ "loss": 0.3242,
142
+ "rewards/accuracies": 0.8999999761581421,
143
+ "rewards/chosen": 0.9433773756027222,
144
+ "rewards/margins": 0.9048371315002441,
145
+ "rewards/rejected": 0.0385403148829937,
146
+ "step": 70
147
+ },
148
+ {
149
+ "epoch": 2.58,
150
+ "grad_norm": 18.855249404907227,
151
+ "learning_rate": 3.017241379310345e-06,
152
+ "logits/chosen": -1.912719964981079,
153
+ "logits/rejected": -1.9267578125,
154
+ "logps/chosen": -184.6862030029297,
155
+ "logps/rejected": -150.09349060058594,
156
+ "loss": 0.3063,
157
+ "rewards/accuracies": 0.949999988079071,
158
+ "rewards/chosen": 0.9958856701850891,
159
+ "rewards/margins": 1.2241456508636475,
160
+ "rewards/rejected": -0.2282601296901703,
161
+ "step": 80
162
+ },
163
+ {
164
+ "epoch": 2.9,
165
+ "grad_norm": 18.644786834716797,
166
+ "learning_rate": 2.729885057471265e-06,
167
+ "logits/chosen": -1.8041893243789673,
168
+ "logits/rejected": -1.8382984399795532,
169
+ "logps/chosen": -122.60682678222656,
170
+ "logps/rejected": -190.001220703125,
171
+ "loss": 0.2892,
172
+ "rewards/accuracies": 0.949999988079071,
173
+ "rewards/chosen": 1.1825361251831055,
174
+ "rewards/margins": 1.4003632068634033,
175
+ "rewards/rejected": -0.2178269922733307,
176
+ "step": 90
177
+ },
178
+ {
179
+ "epoch": 2.9,
180
+ "eval_logits/chosen": -1.799451470375061,
181
+ "eval_logits/rejected": -1.8927640914916992,
182
+ "eval_logps/chosen": -104.44667053222656,
183
+ "eval_logps/rejected": -270.4913635253906,
184
+ "eval_loss": 0.275594562292099,
185
+ "eval_rewards/accuracies": 1.0,
186
+ "eval_rewards/chosen": 1.319871187210083,
187
+ "eval_rewards/margins": 1.7381019592285156,
188
+ "eval_rewards/rejected": -0.4182307720184326,
189
+ "eval_runtime": 9.9268,
190
+ "eval_samples_per_second": 2.821,
191
+ "eval_steps_per_second": 0.705,
192
+ "step": 90
193
+ }
194
+ ],
195
+ "logging_steps": 10,
196
+ "max_steps": 180,
197
+ "num_input_tokens_seen": 0,
198
+ "num_train_epochs": 6,
199
+ "save_steps": 90,
200
+ "total_flos": 0.0,
201
+ "train_batch_size": 1,
202
+ "trial_name": null,
203
+ "trial_params": null
204
+ }
checkpoint-90/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddb616965f243d067df3d0989701364bac00b0a89b6fb3bed8e9fc7ddb137e5f
3
+ size 5304