--- library_name: peft tags: - trl - dpo - DPO - WeniGPT - generated_from_trainer base_model: Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-merged model-index: - name: WeniGPT-Agents-Mistral-1.0.6-SFT-1.0.6-DPO results: [] --- # WeniGPT-Agents-Mistral-1.0.6-SFT-1.0.6-DPO This model is a fine-tuned version of [Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-merged](https://huggingface.co/Weni/WeniGPT-Agents-Mistral-1.0.6-SFT-merged) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4369 - Rewards/chosen: 1.0224 - Rewards/rejected: -0.1812 - Rewards/accuracies: 0.5 - Rewards/margins: 1.2036 - Logps/rejected: -55.7310 - Logps/chosen: -34.8112 - Logits/rejected: -1.8517 - Logits/chosen: -1.8185 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - training_steps: 90 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.5772 | 1.94 | 30 | 0.5171 | 0.5191 | -0.0654 | 0.5 | 0.5845 | -55.3450 | -36.4889 | -1.8456 | -1.8132 | | 0.5125 | 3.87 | 60 | 0.4517 | 0.8981 | -0.1507 | 0.5 | 1.0487 | -55.6293 | -35.2258 | -1.8501 | -1.8170 | | 0.491 | 5.81 | 90 | 0.4369 | 1.0224 | -0.1812 | 0.5 | 1.2036 | -55.7310 | -34.8112 | -1.8517 | -1.8185 | ### Framework versions - PEFT 0.10.0 - Transformers 4.38.2 - Pytorch 2.1.0+cu118 - Datasets 2.18.0 - Tokenizers 0.15.2