ironrock commited on
Commit
bc5e1b3
1 Parent(s): 74e3fcb

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +59 -51
README.md CHANGED
@@ -1,82 +1,90 @@
1
  ---
2
- library_name: peft
 
3
  tags:
4
- - trl
5
- - dpo
6
  - DPO
7
  - WeniGPT
8
- - generated_from_trainer
9
  base_model: Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged
10
  model-index:
11
- - name: WeniGPT-Agents-Mistral-1.0.0-SFT-1.0.25-DPO
12
  results: []
 
13
  ---
14
 
15
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
- should probably proofread and complete it, then remove this comment. -->
17
 
18
- # WeniGPT-Agents-Mistral-1.0.0-SFT-1.0.25-DPO
 
19
 
20
- This model is a fine-tuned version of [Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged](https://huggingface.co/Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.0048
23
- - Rewards/chosen: 3.9169
24
- - Rewards/rejected: -6.2067
25
- - Rewards/accuracies: 1.0
26
- - Rewards/margins: 10.1235
27
- - Logps/rejected: -240.9936
28
- - Logps/chosen: -117.4673
29
- - Logits/rejected: -1.9027
30
- - Logits/chosen: -1.8786
31
 
32
- ## Model description
33
 
34
- More information needed
35
 
36
- ## Intended uses & limitations
37
 
38
- More information needed
39
 
40
- ## Training and evaluation data
 
 
 
 
41
 
42
- More information needed
 
 
 
 
 
 
 
 
 
43
 
44
- ## Training procedure
 
 
 
45
 
46
  ### Training hyperparameters
47
 
48
  The following hyperparameters were used during training:
49
  - learning_rate: 5e-06
50
- - train_batch_size: 1
51
- - eval_batch_size: 1
52
- - seed: 42
53
- - distributed_type: multi-GPU
54
- - num_devices: 4
55
  - gradient_accumulation_steps: 2
 
56
  - total_train_batch_size: 8
57
- - total_eval_batch_size: 4
58
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
- - lr_scheduler_type: linear
60
- - lr_scheduler_warmup_ratio: 0.03
61
- - training_steps: 180
62
- - mixed_precision_training: Native AMP
63
 
64
  ### Training results
65
 
66
- | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
67
- |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
68
- | 0.225 | 0.9677 | 30 | 0.2227 | 2.6681 | -1.0085 | 1.0 | 3.6765 | -215.0026 | -123.7113 | -1.9566 | -1.9326 |
69
- | 0.0853 | 1.9355 | 60 | 0.1095 | 3.7286 | -2.2208 | 1.0 | 5.9494 | -221.0642 | -118.4086 | -1.9400 | -1.9170 |
70
- | 0.0285 | 2.9032 | 90 | 0.0545 | 4.1460 | -3.9811 | 1.0 | 8.1270 | -229.8655 | -116.3218 | -1.9301 | -1.9063 |
71
- | 0.001 | 3.8710 | 120 | 0.0468 | 4.1806 | -5.0175 | 1.0 | 9.1980 | -235.0477 | -116.1489 | -1.9141 | -1.8902 |
72
- | 0.0021 | 4.8387 | 150 | 0.0087 | 3.9958 | -5.9294 | 1.0 | 9.9252 | -239.6072 | -117.0728 | -1.9056 | -1.8815 |
73
- | 0.0014 | 5.8065 | 180 | 0.0048 | 3.9169 | -6.2067 | 1.0 | 10.1235 | -240.9936 | -117.4673 | -1.9027 | -1.8786 |
74
-
75
-
76
  ### Framework versions
77
 
78
- - PEFT 0.10.0
79
- - Transformers 4.40.0
80
- - Pytorch 2.1.0+cu118
81
- - Datasets 2.18.0
82
- - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ library_name: "trl"
4
  tags:
 
 
5
  - DPO
6
  - WeniGPT
 
7
  base_model: Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged
8
  model-index:
9
+ - name: Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-1.0.25-DPO
10
  results: []
11
+ language: ['pt']
12
  ---
13
 
14
+ # Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-1.0.25-DPO
 
15
 
16
+ This model is a fine-tuned version of [Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged] on the dataset Weni/wenigpt-agent-dpo-1.0.0 with the DPO trainer. It is part of the WeniGPT project for [Weni](https://weni.ai/).
17
+ Description: Experiment on DPO with other hyperparameters and best SFT model of WeniGPT
18
 
 
19
  It achieves the following results on the evaluation set:
20
+ {'eval_loss': 0.004782966338098049, 'eval_runtime': 14.2865, 'eval_samples_per_second': 1.96, 'eval_steps_per_second': 0.49, 'eval_rewards/chosen': 3.9168648719787598, 'eval_rewards/rejected': -6.206678867340088, 'eval_rewards/accuracies': 1.0, 'eval_rewards/margins': 10.123543739318848, 'eval_logps/rejected': -240.9935760498047, 'eval_logps/chosen': -117.46734619140625, 'eval_logits/rejected': -1.9027243852615356, 'eval_logits/chosen': -1.8786267042160034, 'epoch': 5.806451612903226}
 
 
 
 
 
 
 
 
21
 
22
+ ## Intended uses & limitations
23
 
24
+ This model has not been trained to avoid specific intructions.
25
 
26
+ ## Training procedure
27
 
28
+ Finetuning was done on the model Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged with the following prompt:
29
 
30
+ ```
31
+ ---------------------
32
+ System_prompt:
33
+ Agora você se chama {name}, você é {occupation} e seu objetivo é {chatbot_goal}. O adjetivo que mais define a sua personalidade é {adjective} e você se comporta da seguinte forma:
34
+ {instructions_formatted}
35
 
36
+ {context_statement}
37
+
38
+ Lista de requisitos:
39
+ - Responda de forma natural, mas nunca fale sobre um assunto fora do contexto.
40
+ - Nunca traga informações do seu próprio conhecimento.
41
+ - Repito é crucial que você responda usando apenas informações do contexto.
42
+ - Nunca mencione o contexto fornecido.
43
+ - Nunca mencione a pergunta fornecida.
44
+ - Gere a resposta mais útil possível para a pergunta usando informações do conexto acima.
45
+ - Nunca elabore sobre o porque e como você fez a tarefa, apenas responda.
46
 
47
+
48
+ ---------------------
49
+
50
+ ```
51
 
52
  ### Training hyperparameters
53
 
54
  The following hyperparameters were used during training:
55
  - learning_rate: 5e-06
56
+ - per_device_train_batch_size: 1
57
+ - per_device_eval_batch_size: 1
 
 
 
58
  - gradient_accumulation_steps: 2
59
+ - num_gpus: 4
60
  - total_train_batch_size: 8
61
+ - optimizer: AdamW
62
+ - lr_scheduler_type: cosine
63
+ - num_steps: 180
64
+ - quantization_type: bitsandbytes
65
+ - LoRA: ("\n - bits: 4\n - use_exllama: True\n - device_map: auto\n - use_cache: False\n - lora_r: 128\n - lora_alpha: 64\n - lora_dropout: 0.05\n - bias: none\n - target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj']\n - task_type: CAUSAL_LM",)
 
66
 
67
  ### Training results
68
 
 
 
 
 
 
 
 
 
 
 
69
  ### Framework versions
70
 
71
+ - transformers==4.40.0
72
+ - datasets==2.18.0
73
+ - peft==0.10.0
74
+ - safetensors==0.4.2
75
+ - evaluate==0.4.1
76
+ - bitsandbytes==0.43
77
+ - huggingface_hub==0.22.2
78
+ - seqeval==1.2.2
79
+ - auto-gptq==0.7.1
80
+ - gpustat==1.1.1
81
+ - deepspeed==0.14.0
82
+ - wandb==0.16.6
83
+ - trl==0.8.1
84
+ - accelerate==0.29.3
85
+ - coloredlogs==15.0.1
86
+ - traitlets==5.14.2
87
+ - git+https://github.com/casper-hansen/AutoAWQ.git
88
+
89
+ ### Hardware
90
+ - Cloud provided: runpod.io