ironrock commited on
Commit
2aacf0d
1 Parent(s): 0ab6a66

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +59 -51
README.md CHANGED
@@ -1,82 +1,90 @@
1
  ---
2
- library_name: peft
 
3
  tags:
4
- - trl
5
- - dpo
6
  - DPO
7
  - WeniGPT
8
- - generated_from_trainer
9
  base_model: Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged
10
  model-index:
11
- - name: WeniGPT-Agents-Mistral-1.0.0-SFT-1.0.24-DPO
12
  results: []
 
13
  ---
14
 
15
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
- should probably proofread and complete it, then remove this comment. -->
17
 
18
- # WeniGPT-Agents-Mistral-1.0.0-SFT-1.0.24-DPO
 
19
 
20
- This model is a fine-tuned version of [Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged](https://huggingface.co/Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.0082
23
- - Rewards/chosen: 2.6355
24
- - Rewards/rejected: -2.9994
25
- - Rewards/accuracies: 1.0
26
- - Rewards/margins: 5.6349
27
- - Logps/rejected: -208.5043
28
- - Logps/chosen: -182.0274
29
- - Logits/rejected: -1.9468
30
- - Logits/chosen: -1.9320
31
 
32
- ## Model description
33
 
34
- More information needed
35
 
36
- ## Intended uses & limitations
37
 
38
- More information needed
39
 
40
- ## Training and evaluation data
 
 
 
 
41
 
42
- More information needed
 
 
 
 
 
 
 
 
 
43
 
44
- ## Training procedure
 
 
 
45
 
46
  ### Training hyperparameters
47
 
48
  The following hyperparameters were used during training:
49
  - learning_rate: 5e-06
50
- - train_batch_size: 1
51
- - eval_batch_size: 1
52
- - seed: 42
53
- - distributed_type: multi-GPU
54
- - num_devices: 4
55
  - gradient_accumulation_steps: 2
 
56
  - total_train_batch_size: 8
57
- - total_eval_batch_size: 4
58
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
- - lr_scheduler_type: linear
60
- - lr_scheduler_warmup_ratio: 0.03
61
- - training_steps: 180
62
- - mixed_precision_training: Native AMP
63
 
64
  ### Training results
65
 
66
- | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
67
- |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
68
- | 0.2964 | 0.9677 | 30 | 0.2501 | 0.8715 | -0.1377 | 0.8571 | 1.0092 | -194.1958 | -190.8475 | -1.9378 | -1.9222 |
69
- | 0.1148 | 1.9355 | 60 | 0.1113 | 1.6463 | -0.7092 | 0.8571 | 2.3555 | -197.0533 | -186.9734 | -1.9501 | -1.9340 |
70
- | 0.0655 | 2.9032 | 90 | 0.0471 | 2.1122 | -1.4811 | 1.0 | 3.5933 | -200.9131 | -184.6442 | -1.9616 | -1.9457 |
71
- | 0.0279 | 3.8710 | 120 | 0.0218 | 2.5857 | -2.3439 | 1.0 | 4.9296 | -205.2268 | -182.2766 | -1.9554 | -1.9401 |
72
- | 0.0103 | 4.8387 | 150 | 0.0117 | 2.6480 | -2.7158 | 1.0 | 5.3638 | -207.0864 | -181.9648 | -1.9533 | -1.9384 |
73
- | 0.0052 | 5.8065 | 180 | 0.0082 | 2.6355 | -2.9994 | 1.0 | 5.6349 | -208.5043 | -182.0274 | -1.9468 | -1.9320 |
74
-
75
-
76
  ### Framework versions
77
 
78
- - PEFT 0.10.0
79
- - Transformers 4.40.0
80
- - Pytorch 2.1.0+cu118
81
- - Datasets 2.18.0
82
- - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ library_name: "trl"
4
  tags:
 
 
5
  - DPO
6
  - WeniGPT
 
7
  base_model: Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged
8
  model-index:
9
+ - name: Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-1.0.24-DPO
10
  results: []
11
+ language: ['pt']
12
  ---
13
 
14
+ # Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-1.0.24-DPO
 
15
 
16
+ This model is a fine-tuned version of [Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged] on the dataset Weni/wenigpt-agent-dpo-1.0.0 with the DPO trainer. It is part of the WeniGPT project for [Weni](https://weni.ai/).
17
+ Description: Experiment on DPO with other hyperparameters and best SFT model of WeniGPT
18
 
 
19
  It achieves the following results on the evaluation set:
20
+ {'eval_loss': 0.008221210911870003, 'eval_runtime': 15.9054, 'eval_samples_per_second': 1.76, 'eval_steps_per_second': 0.44, 'eval_rewards/chosen': 2.6355252265930176, 'eval_rewards/rejected': -2.999356508255005, 'eval_rewards/accuracies': 1.0, 'eval_rewards/margins': 5.634881496429443, 'eval_logps/rejected': -208.50425720214844, 'eval_logps/chosen': -182.0274200439453, 'eval_logits/rejected': -1.9468201398849487, 'eval_logits/chosen': -1.9320443868637085, 'epoch': 5.806451612903226}
 
 
 
 
 
 
 
 
21
 
22
+ ## Intended uses & limitations
23
 
24
+ This model has not been trained to avoid specific intructions.
25
 
26
+ ## Training procedure
27
 
28
+ Finetuning was done on the model Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged with the following prompt:
29
 
30
+ ```
31
+ ---------------------
32
+ System_prompt:
33
+ Agora você se chama {name}, você é {occupation} e seu objetivo é {chatbot_goal}. O adjetivo que mais define a sua personalidade é {adjective} e você se comporta da seguinte forma:
34
+ {instructions_formatted}
35
 
36
+ {context_statement}
37
+
38
+ Lista de requisitos:
39
+ - Responda de forma natural, mas nunca fale sobre um assunto fora do contexto.
40
+ - Nunca traga informações do seu próprio conhecimento.
41
+ - Repito é crucial que você responda usando apenas informações do contexto.
42
+ - Nunca mencione o contexto fornecido.
43
+ - Nunca mencione a pergunta fornecida.
44
+ - Gere a resposta mais útil possível para a pergunta usando informações do conexto acima.
45
+ - Nunca elabore sobre o porque e como você fez a tarefa, apenas responda.
46
 
47
+
48
+ ---------------------
49
+
50
+ ```
51
 
52
  ### Training hyperparameters
53
 
54
  The following hyperparameters were used during training:
55
  - learning_rate: 5e-06
56
+ - per_device_train_batch_size: 1
57
+ - per_device_eval_batch_size: 1
 
 
 
58
  - gradient_accumulation_steps: 2
59
+ - num_gpus: 4
60
  - total_train_batch_size: 8
61
+ - optimizer: AdamW
62
+ - lr_scheduler_type: cosine
63
+ - num_steps: 180
64
+ - quantization_type: bitsandbytes
65
+ - LoRA: ("\n - bits: 4\n - use_exllama: True\n - device_map: auto\n - use_cache: False\n - lora_r: 64\n - lora_alpha: 32\n - lora_dropout: 0.05\n - bias: none\n - target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj']\n - task_type: CAUSAL_LM",)
 
66
 
67
  ### Training results
68
 
 
 
 
 
 
 
 
 
 
 
69
  ### Framework versions
70
 
71
+ - transformers==4.40.0
72
+ - datasets==2.18.0
73
+ - peft==0.10.0
74
+ - safetensors==0.4.2
75
+ - evaluate==0.4.1
76
+ - bitsandbytes==0.43
77
+ - huggingface_hub==0.22.2
78
+ - seqeval==1.2.2
79
+ - auto-gptq==0.7.1
80
+ - gpustat==1.1.1
81
+ - deepspeed==0.14.0
82
+ - wandb==0.16.6
83
+ - trl==0.8.1
84
+ - accelerate==0.29.3
85
+ - coloredlogs==15.0.1
86
+ - traitlets==5.14.2
87
+ - git+https://github.com/casper-hansen/AutoAWQ.git
88
+
89
+ ### Hardware
90
+ - Cloud provided: runpod.io