--- library_name: peft tags: - trl - dpo - DPO - WeniGPT - generated_from_trainer base_model: Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged model-index: - name: WeniGPT-Agents-Mistral-1.0.0-SFT-1.0.14-DPO results: [] --- # WeniGPT-Agents-Mistral-1.0.0-SFT-1.0.14-DPO This model is a fine-tuned version of [Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged](https://huggingface.co/Weni/WeniGPT-Agents-Mistral-1.0.0-SFT-merged) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1709 - Rewards/chosen: 1.9941 - Rewards/rejected: -0.4449 - Rewards/accuracies: 0.8571 - Rewards/margins: 2.4390 - Logps/rejected: -161.0436 - Logps/chosen: -111.4245 - Logits/rejected: -1.8499 - Logits/chosen: -1.8319 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - training_steps: 180 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.5263 | 0.9677 | 30 | 0.5183 | 0.3988 | -0.0166 | 0.7143 | 0.4154 | -159.6158 | -116.7421 | -1.8403 | -1.8221 | | 0.2814 | 1.9355 | 60 | 0.3516 | 0.9688 | -0.0208 | 0.7143 | 0.9896 | -159.6299 | -114.8421 | -1.8443 | -1.8259 | | 0.1778 | 2.9032 | 90 | 0.2655 | 1.3864 | -0.0997 | 0.8571 | 1.4861 | -159.8928 | -113.4503 | -1.8470 | -1.8286 | | 0.1388 | 3.8710 | 120 | 0.2128 | 1.7020 | -0.2501 | 0.8571 | 1.9521 | -160.3941 | -112.3981 | -1.8494 | -1.8311 | | 0.1349 | 4.8387 | 150 | 0.1841 | 1.9322 | -0.3766 | 0.8571 | 2.3088 | -160.8158 | -111.6308 | -1.8499 | -1.8319 | | 0.1178 | 5.8065 | 180 | 0.1709 | 1.9941 | -0.4449 | 0.8571 | 2.4390 | -161.0436 | -111.4245 | -1.8499 | -1.8319 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0 - Pytorch 2.1.0+cu118 - Datasets 2.18.0 - Tokenizers 0.19.1