File size: 1,727 Bytes
dd79efd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
library_name: peft
tags:
- trl
- dpo
- generated_from_trainer
base_model: Weni/WeniGPT-2.2.3-Zephyr-7B-merged-LLM_Base_2.0.3_SFT
model-index:
- name: WeniGPT-2.4.3-Zephyr-7B-zephyr-prompt-LLM_Base_2.0.3_DPO_reduction_variation
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# WeniGPT-2.4.3-Zephyr-7B-zephyr-prompt-LLM_Base_2.0.3_DPO_reduction_variation

This model is a fine-tuned version of [Weni/WeniGPT-2.2.3-Zephyr-7B-merged-LLM_Base_2.0.3_SFT](https://huggingface.co/Weni/WeniGPT-2.2.3-Zephyr-7B-merged-LLM_Base_2.0.3_SFT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6931
- Rewards/chosen: 0.0
- Rewards/rejected: 0.0
- Rewards/accuracies: 0.0
- Rewards/margins: 0.0
- Logps/rejected: -204.7329
- Logps/chosen: -64.3550
- Logits/rejected: -2.0322
- Logits/chosen: -1.6462

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1
- mixed_precision_training: Native AMP

### Training results



### Framework versions

- PEFT 0.8.2
- Transformers 4.39.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.17.1
- Tokenizers 0.15.1