File size: 18,468 Bytes
382d052
 
 
8009bbe
 
382d052
 
 
 
 
4a089d8
8009bbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
382d052
 
 
 
 
 
7dbbbb0
fb0b3b2
382d052
e4e0f87
8851fdc
382d052
 
 
 
 
 
 
 
 
 
 
 
 
 
f73361b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
382d052
 
 
 
8851fdc
382d052
fb0b3b2
 
 
 
 
 
 
 
 
382d052
 
 
 
fb0b3b2
 
 
 
382d052
 
 
 
 
 
fb0b3b2
382d052
 
 
 
 
 
 
 
fb0b3b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
382d052
fb0b3b2
382d052
 
fb0b3b2
382d052
 
fb0b3b2
 
 
382d052
 
fb0b3b2
382d052
 
fb0b3b2
 
 
 
382d052
 
fb0b3b2
382d052
 
fb0b3b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8851fdc
fb0b3b2
8851fdc
fb0b3b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
382d052
 
 
 
 
8851fdc
 
 
 
 
 
382d052
8009bbe
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- llama
- open-llama
- mpt
- model-fusion
- fusellm
pipeline_tag: text-generation
model-index:
- name: FuseLLM-7B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 53.24
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Wanfq/FuseLLM-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 78.72
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Wanfq/FuseLLM-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 47.93
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Wanfq/FuseLLM-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 38.17
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Wanfq/FuseLLM-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 74.03
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Wanfq/FuseLLM-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 14.33
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Wanfq/FuseLLM-7B
      name: Open LLM Leaderboard
---
<p align="center" width="100%">
</p>

<div id="top" align="center">

<p style="font-size: 32px; font-weight: bold;">Knowledge Fusion of Large Language Models</p>


<h4> |<a href="https://arxiv.org/abs/2401.10491"> πŸ“‘ Paper </a> |
<a href="https://huggingface.co/FuseAI"> πŸ€— Huggingface Repo </a> |
<a href="https://github.com/fanqiwan/FuseLLM"> 🐱 Github Repo </a> |
</h4>

<!-- **Authors:** -->

_**Fanqi Wan<sup>†</sup>, Xinting Huang<sup>‑</sup>, Deng Cai<sup>‑</sup>, Xiaojun Quan<sup>†</sup>, Wei Bi<sup>‑</sup>, Shuming Shi<sup>‑</sup>**_


<!-- **Affiliations:** -->


_<sup>†</sup> Sun Yat-sen University,
<sup>‑</sup> Tencent AI Lab_

| Model                                                    | BBH   | ARC-easy | ARC-challenge | BoolQ | HellaSwag | OpenBookQA |
|----------------------------------------------------------|-------|----------|---------------|-------|-----------|------------|
| OpenLLaMA-7B                                             | 33.87 | 69.70    | 41.38         | 72.29 | 74.53     | 41.00      |
| MPT-7B                                                   | 33.38 | 70.12    | 42.15         | 74.74 | 76.25     | 42.40      |
| Llama-2-7B                                               | 39.70 | 74.58    | 46.33         | 77.71 | 76.00     | 44.20      |
| Llama-2-CLM-7B                                           | 40.44 | 74.54    | 46.50         | 76.88 | 76.57     | 44.80      |
| πŸ€— [FuseLLM-7B](https://huggingface.co/Wanfq/FuseLLM-7B) | 41.75 | 75.04    | 47.44         | 78.13 | 76.78     | 45.40      |


| Model                                                    | MultiPL-E | TrivialQA | DROP  | LAMBADA | IWSLT2017 | SciBench | 
|----------------------------------------------------------|-----------|-----------|-------|---------|-----------|----------|
| OpenLLaMA-7B                                             | 18.11     | 39.96     | 22.31 | 70.31   | 5.51      | 0.68     |
| MPT-7B                                                   | 17.26     | 28.89     | 23.54 | 70.08   | 5.49      | 0.88     |
| Llama-2-7B                                               | 14.63     | 52.46     | 27.25 | 73.28   | 6.48      | 0.14     |
| Llama-2-CLM-7B                                           | 14.83     | 53.14     | 28.51 | 73.45   | 6.91      | 0.94     |
| πŸ€— [FuseLLM-7B](https://huggingface.co/Wanfq/FuseLLM-7B) | 15.56     | 54.49     | 28.97 | 73.72   | 6.75      | 1.65     |


</div>


## News
- **Jan 22, 2024:** πŸ”₯ We release [FuseLLM-7B](https://huggingface.co/Wanfq/FuseLLM-7B), which is the fusion of three open-source foundation LLMs with distinct architectures, including [Llama-2-7B](https://huggingface.co/meta-llama/Llama-2-7b-hf), [OpenLLaMA-7B](https://huggingface.co/openlm-research/open_llama_7b_v2), and [MPT-7B](https://huggingface.co/mosaicml/mpt-7b).


## WIP

| Source LLMs                                          | Target LLM        |
|------------------------------------------------------|-------------------|
 | Mixtral-8x7B-v0.1, SOLAR-10.7B-v1.0, Mistral-7B-v0.1 | Mistral-7B-v0.1   |
| Mixtral-8x7B-v0.1, SOLAR-10.7B-v1.0, Mistral-7B-v0.1 | SOLAR-10.7B-v1.0  |
| Mixtral-8x7B-v0.1, SOLAR-10.7B-v1.0, Mistral-7B-v0.1 | Mixtral-8x7B-v0.1 |

## Contents

- [Overview](#overview)
- [Model Release](#model-release)
- [Quick Start](#quick-start)
- [Data Construction](#data-construction)
- [Training](#training)
- [Evaluation](#evaluation)
- [Citation](#citation)

## Overview
 
In this study, we explore the realm of knowledge fusion for LLMs to create a unified model that combines the capabilities and distinctive strengths of multiple structurally diverse LLMs. To achieve this, we introduce FuseLLM, which first leverages the generative distributions of these source LLMs to externalize both their collective knowledge and individual strengths, and subsequently transfer them to the target LLM through lightweight continual training.

Unlike model ensemble approaches that require the **parallel deployment of multiple LLMs**, or weight merging techniques that are typically **limited to LLMs with identical architectures**, FuseLLM is designed to support **the fusion of multiple LLMs with diverse architectures into a more potent LLM**. By explicitly transferring their knowledge and capabilities to a single target LLM, FuseLLM offers a powerful and flexible solution for the knowledge fusion of LLMs.

<p align="center">
    <img src="./assets/fig_1.png" width="95%"> <br>
</p>


## Model Release

We release the FuseLLM-7B on πŸ€— [Huggingface Models](https://huggingface.co/models?sort=trending&search=FuseLLM), which is the fusion of three popular open-source LLMs that possess distinct architectures and functionalities: [Llama-2-7B](https://huggingface.co/meta-llama/Llama-2-7b-hf), [OpenLLaMA-7B](https://huggingface.co/openlm-research/open_llama_7b_v2), and [MPT-7B](https://huggingface.co/mosaicml/mpt-7b).

Here are the evaluation results of FuseLLM.

### General Reasoning & Commonsense Reasoning

We first show the performance of FuseLLM on Big-Bench Hard and CommonSense benchmarks, which evaluate the general reasoning and commonsense reasoning abilities respectively.

<p align="center">
    <img src="./assets/fig_4.png" width="95%"> <br>
</p>

### Code Generation & Text Generation

We then evaluate FuseLLM on MultiPL-E, which is a multilingual programming benchmark to assess the code generation performance. We also conduct experiments on several text generation benchmarks, including TrivialQA (question-answering), DROP (reading comprehension), LAMBADA (content analysis), IWSLT2017 (machine translation), and SCIBench (theorem application). 

<p align="center">
    <img src="./assets/fig_5.png" width="95%"> <br>
</p>

### Instruction Following

FuseLLM is also applicable to the fusion of instruction-tuned LLMs. We further evaluate the Vicuna Benchmark, which assesses the instruction following ability.

<p align="center">
    <img src="./assets/fig_6.png" width="50%"> <br>
</p>

### FuseLLM vs. Knowledge Distillation

As knowledge distillation is also a method for enhancing the performance of LLMs by utilizing representations, we compare FuseLLM with Llama-2 KD, which is distilled from Llama-2 13B.

<p align="center">
    <img src="./assets/fig_7.png" width="50%"> <br>
</p>

### FuseLLM vs. Model Ensemble & Weight Merging

To compare FuseLLM with existing fusion methods (such as model ensemble and weight merging), we simulate scenarios to ensure model fusion with an identical structure where multiple source LLMs are derived from the same base model but are continually trained on different corpus. We then test the perplexity of these fusion methods on different benchmarks.


<p align="center">
    <img src="./assets/fig_8.png" width="50%"> <br>
</p>

## Quick Start

### Setup

We use `python 3.9` in this project.

Then, we have to install all the libraries listed in `requirements.txt`.

```bash
pip install -r requirements.txt
```

### Usage

```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("Wanfq/FuseLLM-7B", use_fast=False)
model = AutoModel.from_pretrained("Wanfq/FuseLLM-7B", torch_dtype="auto")
model.cuda()
inputs = tokenizer("<your text here>", return_tensors="pt").to(model.device)
tokens = model.generate(
  **inputs,
  max_new_tokens=512,
  temperature=0.6,
  top_p=0.9,
  do_sample=True,
)
print(tokenizer.decode(tokens[0], skip_special_tokens=True))
```

We also find `Exllama v2 Quantizations` version on [FuseLLM-7B-exl2](https://huggingface.co/bartowski/FuseLLM-7B-exl2), it uses [ExLlamaV2 v0.0.11](https://github.com/turboderp/exllamav2/releases/tag/v0.0.11) for quantization.

## Data Construction

We use the [MiniPile](https://huggingface.co/datasets/JeanKaddour/minipile) dataset for continual training. 

Here we show the scripts to obtain representations from multiple LLMs for model fusion.

1. Split long text

```bash
python ./src/utils/split_long_text.py \
  --base_model_name_or_path "<path_to_llama_2_7b>" \
  --blending_model_name_or_path "<path_to_open_llama_7b_v2>" \
  --another_blending_model_name_or_path "<path_to_mpt_7b>" \
  --dataset "<path_to_minipile>" \
  --dataset_save_dir "<path_to_minipile_split>" \
  --cache_dir "<path_to_cache_dir>" \
  --block_size 2048 \
  --preprocessing_num_workers 80
```

2. Get representations for each LLM

```bash
# We split the dataset into 8 splits, then process each split on a GPU.
# Please run this script for llama_2_7b, open_llama_7b_v2, and mpt_7b.
for i in {0..7}; do
export CUDA_VISIBLE_DEVICES=${i}
python ./src/utils/forward_for_logits.py \
  --model_name_or_path "<path_to_each_model>" \
  --dataset "<path_to_minipile_split>" \
  --dataset_save_dir "${i}_8_<path_to_minipile_split_each_model_representation>" \
  --dataset_split_num 8 \
  --dataset_index ${i} \
  --cache_dir "<path_to_cache_dir>" \
  --model_max_length 2048 \
  --training_mode full \
  --load_in_half bf16 \
  --batch_size 8 \
  --preprocessing_num_workers 80 \
  --top_k_logits 10 \
  --save_per_token_metric 2>&1 > "${i}_8_<path_to_log_file>" 2>&1 &
unset CUDA_VISIBLE_DEVICES
sleep 30
done

wait
```

3. Align representations from different LLMs

```bash
# Get vocab mapping from different LLMs.

# llama_2_7b <-> open_llama_7b_v2
python ./src/utils/vocab_mapping.py \
  --base_model_name_or_path "<path_to_llama_2_7b>" \
  --blending_model_name_or_path "<path_to_open_llama_7b_v2>" \
  --dataset_dir "<path_to_minipile_split>" \
  --vocab_mapping_save_dir "<path_to_llama_2_7b_open_llama_7b_v2_vocab_mapping>" \
  --cache_dir "<path_to_cache_dir>" \
  --model_max_length 2048 \
  --vocab_mapping_type "default" \
  --num_process 1

# llama_2_7b <-> mpt_7b
python ./src/utils/vocab_mapping.py \
  --base_model_name_or_path "<path_to_llama_2_7b>" \
  --blending_model_name_or_path "<path_to_mpt_7b>" \
  --dataset_dir "<path_to_minipile_split>" \
  --vocab_mapping_save_dir "<path_to_llama_2_7b_mpt_7b_vocab_mapping>" \
  --cache_dir "<path_to_cache_dir>" \
  --model_max_length 2048 \
  --vocab_mapping_type "default" \
  --num_process 1
```

```bash
# Align representations from different LLMs.

# llama_2_7b <-> open_llama_7b_v2
for i in {0..7}; do
python ./src/utils/token_alignment.py \
  --base_model_name_or_path "<path_to_llama_2_7b>" \
  --blending_model_name_or_path "<path_to_open_llama_7b_v2>" \
  --base_dataset_dir "${i}_8_<path_to_minipile_split_llama_2_7b_representation>" \
  --blending_dataset_dir "${i}_8_<path_to_minipile_split_open_llama_7b_v2_representation>" \
  --dataset_save_dir "${i}_8_<path_to_minipile_split_llama_2_7b_open_llama_7b_v2_aligned_representation>" \
  --cache_dir "<path_to_cache_dir>" \
  --model_max_length 2048 \
  --preprocessing_num_workers 80 \
  --batch_size 100 \
  --blending_model_index 0 \
  --vocab_align_type "soft" \
  --vocab_mapping_save_dir "<path_to_llama_2_7b_open_llama_7b_v2_vocab_mapping>" \
  --metric_level "sequence"
done 

# llama_2_7b <-> mpt_7b
for i in {0..7}; do
python ./src/utils/token_alignment.py \
  --base_model_name_or_path "<path_to_llama_2_7b>" \
  --blending_model_name_or_path "<path_to_mpt_7b>" \
  --base_dataset_dir "${i}_8_<path_to_minipile_split_llama_2_7b_open_llama_7b_v2_aligned_representation>" \
  --blending_dataset_dir "${i}_8_<path_to_minipile_split_mpt_7b_representation>" \
  --dataset_save_dir "${i}_8_<path_to_minipile_split_llama_2_7b_open_llama_7b_v2_mpt_7b_aligned_representation>" \
  --cache_dir "<path_to_cache_dir>" \
  --model_max_length 2048 \
  --preprocessing_num_workers 80 \
  --batch_size 100 \
  --blending_model_index 1 \
  --vocab_align_type "soft" \
  --vocab_mapping_save_dir "<path_to_llama_2_7b_mpt_7b_vocab_mapping>" \
  --metric_level "sequence"
done
```

4. Packing all features to speed up training.

```bash
for i in {0..7}; do
python3 ./src/utils/packing.py \
  --dataset_dir "${i}_8_<path_to_minipile_split_llama_2_7b_open_llama_7b_v2_mpt_7b_aligned_representation>" \
  --dataset_save_dir "${i}_8_<path_to_miniplie_fusellm_processed>" \
  --cache_dir "<path_to_cache_dir>" \
  --model_max_length 2048 \
  --preprocessing_num_workers 80 \
  --batch_size 1000 \
  --metric_level "sequence"
```

The final processed data is at `${i}_8_<path_to_miniplie_fusellm_processed>`, where `i in {0..7}`.

## Training

Here, we show the script for FuseLLM training.

```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7

deepspeed --master_port=20001 ./src/train.py \
  --training_mode full \
  --deepspeed ./config/zero_stage2_config.json \
  --model_name_or_path "<path_to_llama_2_7b>" \
  --output_dir "<path_to_save_fusellm_7b>" \
  --model_max_length 2048 \
  --logging_steps 1 \
  --save_strategy steps \
  --save_steps 500 \
  --save_total_limit 1 \
  --evaluation_strategy steps \
  --per_device_eval_batch_size 1 \
  --logging_strategy steps \
  --do_train \
  --do_eval \
  --bf16 True \
  --tf32 True \
  --warmup_ratio 0.008 \
  --lr_scheduler_type cosine \
  --dataset_name "0_8_<path_to_miniplie_fusellm_processed>,1_8_<path_to_miniplie_fusellm_processed>,2_8_<path_to_miniplie_fusellm_processed>,3_8_<path_to_miniplie_fusellm_processed>,4_8_<path_to_miniplie_fusellm_processed>,5_8_<path_to_miniplie_fusellm_processed>,6_8_<path_to_miniplie_fusellm_processed>,7_8_<path_to_miniplie_fusellm_processed>" \
  --per_device_train_batch_size 1 \
  --gradient_accumulation_steps 16 \
  --num_train_epochs 1 \
  --eval_steps 500 \
  --optim adamw_torch \
  --adam_beta1 0.9 \
  --adam_beta2 0.95 \
  --learning_rate 1e-5 \
  --weight_decay 0.1 \
  --max_grad_norm 1.0 \
  --seed 42 \
  --gradient_checkpointing True \
  --use_flash_attn True \
  --report_to tensorboard \
  --do_distill \
  --distill_with_ref_model True \
  --distill_with_aligned_model_0 True \
  --distill_with_aligned_model_1 True \
  --distill_loss_type "ce" \
  --distill_teacher_temperature 1.0 \
  --lm_loss_weight 0.9 \
  --distill_greater_as_gt True \
  --distill_greater_as_gt_type "hard" \
  --dataloader_num_workers 10 \
  --remove_unused_columns False 2>&1 | tee "<path_to_log_file>"
```

## Evaluation

The evaluation code we used in our evaluation are list as follows:

- [Big-Bench Hard](https://github.com/allenai/open-instruct/tree/main/eval)
- [CommonSense: ARC-easy, ARC-challenge, BoolQ, HellaSwag, OpenBookQA](https://github.com/EleutherAI/lm-evaluation-harness/releases/tag/v0.3.0)
- [MultiPL-E](https://github.com/bigcode-project/bigcode-evaluation-harness)
- [Text Generation: TrivialQA, DROP, LAMBADA, IWSLT2017, SciBench](https://github.com/open-compass/opencompass)
- [Vicuna Bench](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge)

## Citation

If you find this work is relevant with your research or applications, please feel free to cite our work!
```
@inproceedings{wan2024knowledge,
    title={Knowledge Fusion of Large Language Models},
    author={Fanqi Wan and Xinting Huang and Deng Cai and Xiaojun Quan and Wei Bi and Shuming Shi},
    booktitle={The Twelfth International Conference on Learning Representations},
    year={2024},
    url={https://openreview.net/pdf?id=jiDsk12qcz}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Wanfq__FuseLLM-7B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |51.07|
|AI2 Reasoning Challenge (25-Shot)|53.24|
|HellaSwag (10-Shot)              |78.72|
|MMLU (5-Shot)                    |47.93|
|TruthfulQA (0-shot)              |38.17|
|Winogrande (5-shot)              |74.03|
|GSM8k (5-shot)                   |14.33|