Walmart-the-bag commited on
Commit
94e4342
1 Parent(s): bd6ce2a

Upload folder using huggingface_hub

Browse files
all_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "train_loss": 0.424075347293623,
4
+ "train_runtime": 2120.5143,
5
+ "train_samples_per_second": 3.964,
6
+ "train_steps_per_second": 1.321
7
+ }
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "stabilityai/stablelm-zephyr-3b",
3
+ "architectures": [
4
+ "StableLMEpochForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_stablelm_epoch.StableLMEpochConfig",
8
+ "AutoModel": "modeling_stablelm_epoch.StableLMEpochForCausalLM",
9
+ "AutoModelForCausalLM": "stabilityai/stablelm-zephyr-3b--modeling_stablelm_epoch.StableLMEpochForCausalLM"
10
+ },
11
+ "bos_token_id": 0,
12
+ "eos_token_id": 0,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 2560,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 6912,
17
+ "max_position_embeddings": 4096,
18
+ "model_type": "stablelm_epoch",
19
+ "norm_eps": 1e-05,
20
+ "num_attention_heads": 32,
21
+ "num_heads": 32,
22
+ "num_hidden_layers": 32,
23
+ "num_key_value_heads": 32,
24
+ "rope_pct": 0.25,
25
+ "rope_theta": 10000,
26
+ "rotary_scaling_factor": 1.0,
27
+ "tie_word_embeddings": false,
28
+ "torch_dtype": "float16",
29
+ "transformers_version": "4.34.1",
30
+ "use_cache": false,
31
+ "vocab_size": 50304
32
+ }
configuration_stablelm_epoch.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Stability and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ StableLM Epoch model configuration"""
16
+ from transformers import PretrainedConfig
17
+ from transformers.utils import logging
18
+
19
+
20
+ logger = logging.get_logger(__name__)
21
+
22
+
23
+ class StableLMEpochConfig(PretrainedConfig):
24
+ r"""
25
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
26
+ documentation from [`PretrainedConfig`] for more information.
27
+
28
+ Args:
29
+ vocab_size (`int`, *optional*, defaults to 50_304):
30
+ Vocabulary size of the StableLM model. Defines the number of different tokens that
31
+ can be represented by the `inputs_ids` passed when calling [`StableLMEpochModel`].
32
+ intermediate_size (`int`, *optional*, defaults to 6912):
33
+ Dimension of the MLP representations.
34
+ hidden_size (`int`, *optional*, defaults to 2560):
35
+ Dimension of the decoder layers and the pooler layer.
36
+ num_hidden_layers (`int`, *optional*, defaults to 32):
37
+ Number of hidden layers in the Transformer decoder.
38
+ num_attention_heads (`int`, *optional*, defaults to 32):
39
+ Number of attention heads for each attention layer in the Transformer encoder.
40
+ num_key_value_heads (`int`, *optional*):
41
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
42
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
43
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
44
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
45
+ by meanpooling all the original heads within that group. For more details checkout [this
46
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
47
+ `num_attention_heads`.
48
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
49
+ The non-linear activation function (function or string).
50
+ rope_pct (`float`, *optional*, defaults to 1.0):
51
+ Percentage of hidden dimensions to allocate to rotary embeddings.
52
+ rope_theta (`float`, *optional*, defaults to 10000.0):
53
+ The base period of the RoPE embeddings.
54
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
55
+ The maximum sequence length that this model might ever be used with.
56
+ Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
57
+ initializer_range (`float`, *optional*, defaults to 1e-5):
58
+ The standard deviation of the truncated_normal_initializer for initializing
59
+ all weight matrices.
60
+ norm_eps (`float`, *optional*, defaults to 1e-8):
61
+ The epsilon used by the normalization layers.
62
+ use_cache (`bool`, *optional*, defaults to `True`):
63
+ Whether or not the model should return the last key/values attentions
64
+ (not used by all models). Only relevant if `config.is_decoder=True`.
65
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
66
+ Whether to tie weight embeddings
67
+ """
68
+ model_type = "stablelm_epoch"
69
+ keys_to_ignore_at_inference = ["past_key_values"]
70
+
71
+ def __init__(
72
+ self,
73
+ vocab_size=50_304,
74
+ intermediate_size=6912,
75
+ hidden_size=2560,
76
+ num_hidden_layers=32,
77
+ num_attention_heads=32,
78
+ num_key_value_heads=32,
79
+ hidden_act="silu",
80
+ rope_pct=0.25,
81
+ rope_theta=10_000,
82
+ max_position_embeddings=4096,
83
+ initializer_range=0.02,
84
+ norm_eps=1.0e-5,
85
+ use_cache=True,
86
+ bos_token_id=0,
87
+ eos_token_id=2,
88
+ tie_word_embeddings=False,
89
+ **kwargs,
90
+ ):
91
+ self.vocab_size = vocab_size
92
+ self.max_position_embeddings = max_position_embeddings
93
+ self.intermediate_size = intermediate_size
94
+ self.hidden_size = hidden_size
95
+ self.num_hidden_layers = num_hidden_layers
96
+ self.num_attention_heads = num_attention_heads
97
+ self.num_key_value_heads = num_key_value_heads
98
+ self.hidden_act = hidden_act
99
+ self.rope_pct = rope_pct
100
+ self.rope_theta = rope_theta
101
+ self.initializer_range = initializer_range
102
+ self.norm_eps = norm_eps
103
+ self.use_cache = use_cache
104
+ self.tie_word_embeddings = tie_word_embeddings
105
+ super().__init__(
106
+ bos_token_id=bos_token_id,
107
+ eos_token_id=eos_token_id,
108
+ tie_word_embeddings=tie_word_embeddings,
109
+ **kwargs,
110
+ )
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 0,
5
+ "transformers_version": "4.34.1"
6
+ }
modeling_stablelm_epoch.py ADDED
@@ -0,0 +1,687 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Stability AI, EleutherAI, and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ # This code is based off the following work:
17
+ # https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
18
+ # https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py
19
+ """ PyTorch StableLM Epoch model. """
20
+ from typing import Optional, Tuple, Union
21
+ import math
22
+
23
+ import torch
24
+ import torch.utils.checkpoint
25
+ from torch import nn
26
+ from torch.nn import CrossEntropyLoss
27
+ from transformers.modeling_outputs import (
28
+ BaseModelOutputWithPast,
29
+ CausalLMOutputWithPast,
30
+ )
31
+ from transformers.modeling_utils import PreTrainedModel
32
+ from transformers.utils import logging
33
+ from .configuration_stablelm_epoch import StableLMEpochConfig
34
+
35
+
36
+ logger = logging.get_logger(__name__)
37
+
38
+
39
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
40
+ def _make_causal_mask(
41
+ input_ids_shape: torch.Size,
42
+ dtype: torch.dtype,
43
+ device: torch.device,
44
+ past_key_values_length: int = 0,
45
+ ):
46
+ """Make causal mask used for bi-directional self-attention."""
47
+ batch_size, tgt_len = input_ids_shape
48
+ mask = torch.full((tgt_len, tgt_len), torch.finfo(torch.float16).min, device=device)
49
+ mask_cond = torch.arange(mask.size(-1), device=device)
50
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
51
+ mask = mask.to(dtype)
52
+ if past_key_values_length > 0:
53
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
54
+ return mask[None, None, :, :].expand(batch_size, 1, tgt_len, tgt_len + past_key_values_length)
55
+
56
+
57
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
58
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
59
+ """Expands attention_mask from `[batch_size, seq_len]` to `[batch_size, 1, tgt_seq_len, src_seq_len]`."""
60
+ batch_size, src_len = mask.size()
61
+ tgt_len = tgt_len if tgt_len is not None else src_len
62
+
63
+ expanded_mask = mask[:, None, None, :].expand(batch_size, 1, tgt_len, src_len).to(dtype)
64
+ inverted_mask = 1.0 - expanded_mask
65
+
66
+ return inverted_mask.masked_fill(
67
+ inverted_mask.to(torch.bool), torch.finfo(dtype).min
68
+ )
69
+
70
+
71
+ class RotaryEmbedding(nn.Module):
72
+ def __init__(
73
+ self,
74
+ dim: int,
75
+ max_position_embeddings: int,
76
+ base: int = 10_000,
77
+ device: Optional[torch.device] = None,
78
+ ):
79
+ super().__init__()
80
+
81
+ self.dim = dim
82
+ self.max_position_embeddings = max_position_embeddings
83
+ self.base = base
84
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
85
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
86
+
87
+ # Build here to make `torch.jit.trace` work.
88
+ self._set_cos_sin_cache(
89
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype(),
90
+ )
91
+
92
+ def _set_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype):
93
+ self.max_seq_len_cached = seq_len
94
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
95
+
96
+ # Don't do einsum, it converts fp32 to fp16 under AMP
97
+ # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
98
+ freqs = torch.outer(t, self.inv_freq)
99
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
100
+ emb = torch.cat((freqs, freqs), dim=-1)
101
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
102
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
103
+
104
+ def forward(self, x: torch.Tensor, seq_len: Optional[int] = None):
105
+ # x: [batch_size, num_heads, seq_len, head_size]
106
+ if seq_len > self.max_seq_len_cached:
107
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.get_default_dtype())
108
+ return (
109
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
110
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
111
+ )
112
+
113
+
114
+ def rotate_half(x: torch.Tensor):
115
+ """Rotates half the hidden dims of the input."""
116
+ x1, x2 = torch.chunk(x, 2, dim=-1)
117
+ return torch.cat((-x2, x1), dim=-1)
118
+
119
+
120
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
121
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
122
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
123
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
124
+ cos = cos[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim]
125
+ sin = sin[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim]
126
+ q_embed = (q * cos) + (rotate_half(q) * sin)
127
+ k_embed = (k * cos) + (rotate_half(k) * sin)
128
+ return q_embed, k_embed
129
+
130
+
131
+ class MLP(nn.Module):
132
+ def __init__(self, config: StableLMEpochConfig):
133
+ super().__init__()
134
+ self.config = config
135
+ self.hidden_size = config.hidden_size
136
+ self.intermediate_size = config.intermediate_size
137
+ self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
138
+ self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
139
+ self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
140
+ self.act_fn = nn.SiLU()
141
+
142
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
143
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
144
+
145
+
146
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
147
+ """
148
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
149
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
150
+ """
151
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
152
+ if n_rep == 1:
153
+ return hidden_states
154
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
155
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
156
+
157
+
158
+ class Attention(nn.Module):
159
+ def __init__(self, config: StableLMEpochConfig):
160
+ super().__init__()
161
+ self.config = config
162
+ self.hidden_size = config.hidden_size
163
+ self.num_heads = config.num_attention_heads
164
+ self.head_dim = self.hidden_size // self.num_heads
165
+ self.num_key_value_heads = config.num_key_value_heads
166
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
167
+ self.max_position_embeddings = config.max_position_embeddings
168
+
169
+ if (self.head_dim * self.num_heads) != self.hidden_size:
170
+ raise ValueError(
171
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
172
+ f" and `num_heads`: {self.num_heads})."
173
+ )
174
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
175
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
176
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
177
+ self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
178
+
179
+ self._init_rope()
180
+
181
+ def _init_rope(self):
182
+ self.rotary_ndims = int(self.head_dim * self.config.rope_pct)
183
+ self.rotary_emb = RotaryEmbedding(
184
+ self.rotary_ndims,
185
+ max_position_embeddings=self.config.max_position_embeddings,
186
+ base=self.config.rope_theta,
187
+ )
188
+
189
+ def forward(
190
+ self,
191
+ hidden_states: torch.FloatTensor,
192
+ attention_mask: torch.FloatTensor,
193
+ position_ids: torch.LongTensor,
194
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
195
+ output_attentions: Optional[bool] = False,
196
+ use_cache: Optional[bool] = False,
197
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
198
+ bsz, q_len, _ = hidden_states.size()
199
+
200
+ query_states = self.q_proj(hidden_states)
201
+ key_states = self.k_proj(hidden_states)
202
+ value_states = self.v_proj(hidden_states)
203
+
204
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
205
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
206
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
207
+
208
+ query_rot = query_states[..., : self.rotary_ndims]
209
+ query_pass = query_states[..., self.rotary_ndims :]
210
+ key_rot = key_states[..., : self.rotary_ndims]
211
+ key_pass = key_states[..., self.rotary_ndims :]
212
+
213
+ kv_seq_len = key_states.shape[-2]
214
+ if past_key_value is not None:
215
+ kv_seq_len += past_key_value[0].shape[-2]
216
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
217
+ query_states, key_states = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
218
+
219
+ # [batch_size, num_heads, seq_len, head_dim]
220
+ query_states = torch.cat((query_states, query_pass), dim=-1)
221
+ key_states = torch.cat((key_states, key_pass), dim=-1)
222
+
223
+ if past_key_value is not None:
224
+ # Reuse k, v, self_attention
225
+ key_states = torch.cat((past_key_value[0], key_states), dim=2)
226
+ value_states = torch.cat((past_key_value[1], value_states), dim=2)
227
+
228
+ past_key_value = (key_states, value_states) if use_cache else None
229
+
230
+ # Repeat k/v heads if n_kv_heads < n_heads
231
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
232
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
233
+
234
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
235
+
236
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
237
+ raise ValueError(
238
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
239
+ f" {attn_weights.size()}"
240
+ )
241
+
242
+ if attention_mask is not None:
243
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
244
+ raise ValueError(
245
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
246
+ )
247
+ attn_weights = attn_weights + attention_mask
248
+
249
+ # Upcast attention to fp32
250
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
251
+ attn_output = torch.matmul(attn_weights, value_states)
252
+
253
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
254
+ raise ValueError(
255
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
256
+ f" {attn_output.size()}"
257
+ )
258
+
259
+ # Merge heads
260
+ attn_output = attn_output.transpose(1, 2).contiguous()
261
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
262
+
263
+ # Final linear projection
264
+ attn_output = self.o_proj(attn_output)
265
+
266
+ if not output_attentions:
267
+ attn_weights = None
268
+
269
+ return attn_output, attn_weights, past_key_value
270
+
271
+
272
+ class DecoderLayer(nn.Module):
273
+ def __init__(self, config: StableLMEpochConfig):
274
+ super().__init__()
275
+ self.self_attn = Attention(config)
276
+ self.mlp = MLP(config)
277
+ self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
278
+ self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
279
+
280
+ def forward(
281
+ self,
282
+ hidden_states: Optional[torch.FloatTensor],
283
+ attention_mask: Optional[torch.FloatTensor] = None,
284
+ position_ids: Optional[torch.LongTensor] = None,
285
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
286
+ output_attentions: Optional[bool] = False,
287
+ use_cache: Optional[bool] = False,
288
+ ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
289
+ residual = hidden_states
290
+
291
+ hidden_states = self.input_layernorm(hidden_states)
292
+
293
+ # Self Attention
294
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
295
+ hidden_states=hidden_states,
296
+ attention_mask=attention_mask,
297
+ position_ids=position_ids,
298
+ past_key_value=past_key_value,
299
+ output_attentions=output_attentions,
300
+ use_cache=use_cache,
301
+ )
302
+ hidden_states = residual + hidden_states
303
+
304
+ # Fully Connected
305
+ residual = hidden_states
306
+ hidden_states = self.post_attention_layernorm(hidden_states)
307
+ hidden_states = self.mlp(hidden_states)
308
+ hidden_states = residual + hidden_states
309
+
310
+ outputs = (hidden_states,)
311
+
312
+ if output_attentions:
313
+ outputs += (self_attn_weights,)
314
+
315
+ if use_cache:
316
+ outputs += (present_key_value,)
317
+
318
+ return outputs
319
+
320
+
321
+ class StableLMEpochPreTrainedModel(PreTrainedModel):
322
+ """An abstract class to handle weights initialization and a simple interface
323
+ for downloading and loading pretrained models.
324
+ """
325
+
326
+ config_class = StableLMEpochConfig
327
+ base_model_prefix = "transformer"
328
+ supports_gradient_checkpointing = True
329
+ _no_split_modules = ["DecoderLayer"]
330
+ _skip_keys_device_placement = "past_key_values"
331
+
332
+ def _init_weights(self, module: nn.Module):
333
+ """Initialize the weights"""
334
+ if isinstance(module, nn.Linear):
335
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
336
+ if module.bias is not None:
337
+ module.bias.data.zero_()
338
+ elif isinstance(module, nn.Embedding):
339
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
340
+ if module.padding_idx is not None:
341
+ module.weight.data[module.padding_idx].zero_()
342
+ elif isinstance(module, nn.LayerNorm):
343
+ module.bias.data.zero_()
344
+ module.weight.data.fill_(1.0)
345
+
346
+ def _set_gradient_checkpointing(self, module: nn.Module, value=False):
347
+ if isinstance(module, StableLMEpochModel):
348
+ module.gradient_checkpointing = value
349
+
350
+
351
+ class StableLMEpochModel(StableLMEpochPreTrainedModel):
352
+ def __init__(self, config: StableLMEpochConfig):
353
+ super().__init__(config)
354
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
355
+ self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
356
+ self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
357
+
358
+ self.gradient_checkpointing = False
359
+ # Initialize weights and apply final processing
360
+ self.post_init()
361
+
362
+ def get_input_embeddings(self):
363
+ return self.embed_tokens
364
+
365
+ def set_input_embeddings(self, value: nn.Module):
366
+ self.embed_tokens = value
367
+
368
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
369
+ def _prepare_decoder_attention_mask(
370
+ self,
371
+ attention_mask: torch.Tensor,
372
+ input_shape: torch.Size,
373
+ inputs_embeds: torch.Tensor,
374
+ past_key_values_length: int,
375
+ ):
376
+ # Create causal mask
377
+ # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
378
+ combined_attention_mask = None
379
+ if input_shape[-1] > 1:
380
+ combined_attention_mask = _make_causal_mask(
381
+ input_shape,
382
+ inputs_embeds.dtype,
383
+ device=inputs_embeds.device,
384
+ past_key_values_length=past_key_values_length,
385
+ )
386
+
387
+ if attention_mask is not None:
388
+ # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
389
+ expanded_attn_mask = _expand_mask(
390
+ attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
391
+ ).to(inputs_embeds.device)
392
+ combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
393
+
394
+ return combined_attention_mask
395
+
396
+ def forward(
397
+ self,
398
+ input_ids: Optional[torch.LongTensor] = None,
399
+ attention_mask: Optional[torch.FloatTensor] = None,
400
+ position_ids: Optional[torch.LongTensor] = None,
401
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
402
+ inputs_embeds: Optional[torch.FloatTensor] = None,
403
+ use_cache: Optional[bool] = None,
404
+ output_attentions: Optional[bool] = None,
405
+ output_hidden_states: Optional[bool] = None,
406
+ return_dict: Optional[bool] = None,
407
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
408
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
409
+ output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
410
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
411
+
412
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
413
+
414
+ # Retrieve input_ids and inputs_embeds
415
+ if input_ids is not None and inputs_embeds is not None:
416
+ raise ValueError(
417
+ "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
418
+ )
419
+ elif input_ids is not None:
420
+ batch_size, seq_length = input_ids.shape
421
+ elif inputs_embeds is not None:
422
+ batch_size, seq_length, _ = inputs_embeds.shape
423
+ else:
424
+ raise ValueError(
425
+ "You have to specify either decoder_input_ids or decoder_inputs_embeds"
426
+ )
427
+
428
+ seq_length_with_past = seq_length
429
+ past_key_values_length = 0
430
+
431
+ if past_key_values is not None:
432
+ past_key_values_length = past_key_values[0][0].shape[2]
433
+ seq_length_with_past = seq_length_with_past + past_key_values_length
434
+
435
+ if position_ids is None:
436
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
437
+ position_ids = torch.arange(
438
+ past_key_values_length,
439
+ seq_length + past_key_values_length,
440
+ dtype=torch.long,
441
+ device=device,
442
+ )
443
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
444
+ else:
445
+ position_ids = position_ids.view(-1, seq_length).long()
446
+
447
+ if inputs_embeds is None:
448
+ inputs_embeds = self.embed_tokens(input_ids)
449
+ # Embed positions
450
+ if attention_mask is None:
451
+ attention_mask = torch.ones(
452
+ (batch_size, seq_length_with_past),
453
+ dtype=torch.bool,
454
+ device=inputs_embeds.device,
455
+ )
456
+ attention_mask = self._prepare_decoder_attention_mask(
457
+ attention_mask,
458
+ (batch_size, seq_length),
459
+ inputs_embeds,
460
+ past_key_values_length,
461
+ )
462
+
463
+ hidden_states = inputs_embeds
464
+
465
+ if self.gradient_checkpointing and self.training:
466
+ if use_cache:
467
+ logger.warning(
468
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
469
+ )
470
+ use_cache = False
471
+
472
+ # Decoder layers
473
+ all_hidden_states = () if output_hidden_states else None
474
+ all_self_attns = () if output_attentions else None
475
+ next_decoder_cache = () if use_cache else None
476
+
477
+ for idx, decoder_layer in enumerate(self.layers):
478
+ if output_hidden_states:
479
+ all_hidden_states += (hidden_states,)
480
+
481
+ past_key_value = (
482
+ past_key_values[idx] if past_key_values is not None else None
483
+ )
484
+
485
+ if self.gradient_checkpointing and self.training:
486
+
487
+ def create_custom_forward(module):
488
+ def custom_forward(*inputs):
489
+ # None for past_key_value
490
+ return module(*inputs, past_key_value, output_attentions)
491
+
492
+ return custom_forward
493
+
494
+ layer_outputs = torch.utils.checkpoint.checkpoint(
495
+ create_custom_forward(decoder_layer),
496
+ hidden_states,
497
+ attention_mask,
498
+ position_ids,
499
+ )
500
+ else:
501
+ layer_outputs = decoder_layer(
502
+ hidden_states,
503
+ attention_mask=attention_mask,
504
+ position_ids=position_ids,
505
+ past_key_value=past_key_value,
506
+ output_attentions=output_attentions,
507
+ use_cache=use_cache,
508
+ )
509
+
510
+ hidden_states = layer_outputs[0]
511
+
512
+ if use_cache:
513
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
514
+
515
+ if output_attentions:
516
+ all_self_attns += (layer_outputs[1],)
517
+
518
+ hidden_states = self.norm(hidden_states)
519
+
520
+ # Add hidden states from the last decoder layer
521
+ if output_hidden_states:
522
+ all_hidden_states += (hidden_states,)
523
+
524
+ next_cache = next_decoder_cache if use_cache else None
525
+ if not return_dict:
526
+ return tuple(
527
+ v
528
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
529
+ if v is not None
530
+ )
531
+ return BaseModelOutputWithPast(
532
+ last_hidden_state=hidden_states,
533
+ past_key_values=next_cache,
534
+ hidden_states=all_hidden_states,
535
+ attentions=all_self_attns,
536
+ )
537
+
538
+
539
+ class StableLMEpochForCausalLM(StableLMEpochPreTrainedModel):
540
+ _tied_weights_keys = ["lm_head.weight"]
541
+
542
+ def __init__(self, config: StableLMEpochConfig):
543
+ super().__init__(config)
544
+
545
+ self.model = StableLMEpochModel(config)
546
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
547
+
548
+ # Initialize weights and apply final processing
549
+ self.post_init()
550
+
551
+ def get_input_embeddings(self):
552
+ return self.model.embed_tokens
553
+
554
+ def set_input_embeddings(self, value):
555
+ self.model.embed_tokens = value
556
+
557
+ def get_output_embeddings(self):
558
+ return self.lm_head
559
+
560
+ def set_output_embeddings(self, new_embeddings: nn.Module):
561
+ self.lm_head = new_embeddings
562
+
563
+ def get_decoder(self):
564
+ return self.model
565
+
566
+ def set_decoder(self, decoder):
567
+ self.model = decoder
568
+
569
+ def forward(
570
+ self,
571
+ input_ids: Optional[torch.LongTensor] = None,
572
+ attention_mask: Optional[torch.FloatTensor] = None,
573
+ position_ids: Optional[torch.LongTensor] = None,
574
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
575
+ inputs_embeds: Optional[torch.FloatTensor] = None,
576
+ labels: Optional[torch.LongTensor] = None,
577
+ use_cache: Optional[bool] = None,
578
+ output_attentions: Optional[bool] = None,
579
+ output_hidden_states: Optional[bool] = None,
580
+ return_dict: Optional[bool] = None,
581
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
582
+ output_attentions = (
583
+ output_attentions
584
+ if output_attentions is not None
585
+ else self.config.output_attentions
586
+ )
587
+ output_hidden_states = (
588
+ output_hidden_states
589
+ if output_hidden_states is not None
590
+ else self.config.output_hidden_states
591
+ )
592
+ return_dict = (
593
+ return_dict if return_dict is not None else self.config.use_return_dict
594
+ )
595
+
596
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
597
+ outputs = self.model(
598
+ input_ids,
599
+ attention_mask=attention_mask,
600
+ position_ids=position_ids,
601
+ past_key_values=past_key_values,
602
+ inputs_embeds=inputs_embeds,
603
+ use_cache=use_cache,
604
+ output_attentions=output_attentions,
605
+ output_hidden_states=output_hidden_states,
606
+ return_dict=return_dict,
607
+ )
608
+
609
+ hidden_states = outputs[0]
610
+ logits = self.lm_head(hidden_states).float()
611
+
612
+ loss = None
613
+ if labels is not None:
614
+ # Shift so that tokens < n predict n
615
+ shift_logits = logits[..., :-1, :].contiguous()
616
+ shift_labels = labels[..., 1:].contiguous()
617
+ # Flatten the tokens
618
+ loss_fct = CrossEntropyLoss()
619
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
620
+ shift_labels = shift_labels.view(-1)
621
+ # Enable model parallelism
622
+ shift_labels = shift_labels.to(shift_logits.device)
623
+ loss = loss_fct(shift_logits, shift_labels)
624
+
625
+ if not return_dict:
626
+ output = (logits,) + outputs[1:]
627
+ return (loss,) + output if loss is not None else output
628
+
629
+ return CausalLMOutputWithPast(
630
+ loss=loss,
631
+ logits=logits,
632
+ past_key_values=outputs.past_key_values,
633
+ hidden_states=outputs.hidden_states,
634
+ attentions=outputs.attentions,
635
+ )
636
+
637
+ def prepare_inputs_for_generation(
638
+ self,
639
+ input_ids,
640
+ past_key_values: Optional[torch.Tensor] = None,
641
+ attention_mask: Optional[torch.Tensor] = None,
642
+ inputs_embeds: Optional[torch.Tensor] = None,
643
+ **kwargs,
644
+ ):
645
+ # Trim decoder_input_ids if past is used
646
+ if past_key_values and past_key_values[0] is not None:
647
+ input_ids = input_ids[:, -1:]
648
+
649
+ position_ids = kwargs.get("position_ids", None)
650
+ if attention_mask is not None and position_ids is None:
651
+ # Create position_ids on the fly for batch generation
652
+ position_ids = attention_mask.long().cumsum(-1) - 1
653
+ position_ids.masked_fill_(attention_mask == 0, 1)
654
+ if past_key_values:
655
+ position_ids = position_ids[:, -1].unsqueeze(-1)
656
+
657
+ # If `inputs_embeds` are passed, we only want to use them in the 1st generation step
658
+ if inputs_embeds is not None and past_key_values is None:
659
+ model_inputs = {"inputs_embeds": inputs_embeds}
660
+ else:
661
+ model_inputs = {"input_ids": input_ids}
662
+
663
+ model_inputs.update(
664
+ {
665
+ "attention_mask": attention_mask,
666
+ "past_key_values": past_key_values,
667
+ "use_cache": kwargs.get("use_cache"),
668
+ "position_ids": position_ids,
669
+ }
670
+ )
671
+ return model_inputs
672
+
673
+ @staticmethod
674
+ def _reorder_cache(past_key_values, beam_idx):
675
+ reordered_past = ()
676
+ for layer_past in past_key_values:
677
+ reordered_past += (
678
+ tuple(
679
+ past_state.index_select(0, beam_idx.to(past_state.device))
680
+ for past_state in layer_past
681
+ ),
682
+ )
683
+ return reordered_past
684
+
685
+
686
+ StableLMEpochConfig.register_for_auto_class()
687
+ StableLMEpochForCausalLM.register_for_auto_class("AutoModelForCausalLM")
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c60b9ede1bc6aae111c76a5ad9492ef1c17ac31d3034b27e14a0a80349d198c5
3
+ size 5909512626
runs/Jan05_17-06-52_nl9mpqzac4/events.out.tfevents.1704474417.nl9mpqzac4.253.3 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c58ae6034bf216fa7f39abcb82ef6c0779151f76d8bc4b695d25aaac67a3d73b
3
+ size 92791
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<|endoftext|>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<|padding|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "50254": {
21
+ "content": " ",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": false
27
+ },
28
+ "50255": {
29
+ "content": " ",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": false
35
+ },
36
+ "50256": {
37
+ "content": " ",
38
+ "lstrip": false,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": false
43
+ },
44
+ "50257": {
45
+ "content": " ",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": false
51
+ },
52
+ "50258": {
53
+ "content": " ",
54
+ "lstrip": false,
55
+ "normalized": true,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": false
59
+ },
60
+ "50259": {
61
+ "content": " ",
62
+ "lstrip": false,
63
+ "normalized": true,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": false
67
+ },
68
+ "50260": {
69
+ "content": " ",
70
+ "lstrip": false,
71
+ "normalized": true,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": false
75
+ },
76
+ "50261": {
77
+ "content": " ",
78
+ "lstrip": false,
79
+ "normalized": true,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": false
83
+ },
84
+ "50262": {
85
+ "content": " ",
86
+ "lstrip": false,
87
+ "normalized": true,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": false
91
+ },
92
+ "50263": {
93
+ "content": " ",
94
+ "lstrip": false,
95
+ "normalized": true,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": false
99
+ },
100
+ "50264": {
101
+ "content": " ",
102
+ "lstrip": false,
103
+ "normalized": true,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": false
107
+ },
108
+ "50265": {
109
+ "content": " ",
110
+ "lstrip": false,
111
+ "normalized": true,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": false
115
+ },
116
+ "50266": {
117
+ "content": " ",
118
+ "lstrip": false,
119
+ "normalized": true,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": false
123
+ },
124
+ "50267": {
125
+ "content": " ",
126
+ "lstrip": false,
127
+ "normalized": true,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": false
131
+ },
132
+ "50268": {
133
+ "content": " ",
134
+ "lstrip": false,
135
+ "normalized": true,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": false
139
+ },
140
+ "50269": {
141
+ "content": " ",
142
+ "lstrip": false,
143
+ "normalized": true,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": false
147
+ },
148
+ "50270": {
149
+ "content": " ",
150
+ "lstrip": false,
151
+ "normalized": true,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": false
155
+ },
156
+ "50271": {
157
+ "content": " ",
158
+ "lstrip": false,
159
+ "normalized": true,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": false
163
+ },
164
+ "50272": {
165
+ "content": " ",
166
+ "lstrip": false,
167
+ "normalized": true,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": false
171
+ },
172
+ "50273": {
173
+ "content": " ",
174
+ "lstrip": false,
175
+ "normalized": true,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": false
179
+ },
180
+ "50274": {
181
+ "content": " ",
182
+ "lstrip": false,
183
+ "normalized": true,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": false
187
+ },
188
+ "50275": {
189
+ "content": " ",
190
+ "lstrip": false,
191
+ "normalized": true,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": false
195
+ },
196
+ "50276": {
197
+ "content": " ",
198
+ "lstrip": false,
199
+ "normalized": true,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": false
203
+ }
204
+ },
205
+ "bos_token": "<|endoftext|>",
206
+ "chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
207
+ "clean_up_tokenization_spaces": true,
208
+ "eos_token": "<|endoftext|>",
209
+ "model_max_length": 2048,
210
+ "pad_token": "<|endoftext|>",
211
+ "padding_side": "right",
212
+ "split_special_tokens": false,
213
+ "tokenizer_class": "GPTNeoXTokenizer",
214
+ "unk_token": "<|endoftext|>"
215
+ }
train_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "train_loss": 0.424075347293623,
4
+ "train_runtime": 2120.5143,
5
+ "train_samples_per_second": 3.964,
6
+ "train_steps_per_second": 1.321
7
+ }
trainer_log.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
@@ -0,0 +1,3388 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.0,
5
+ "eval_steps": 500,
6
+ "global_step": 2802,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 4.999960716301628e-05,
14
+ "loss": 0.9669,
15
+ "step": 5
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 4.999842866441079e-05,
20
+ "loss": 0.8795,
21
+ "step": 10
22
+ },
23
+ {
24
+ "epoch": 0.02,
25
+ "learning_rate": 4.9996464541220155e-05,
26
+ "loss": 1.1216,
27
+ "step": 15
28
+ },
29
+ {
30
+ "epoch": 0.02,
31
+ "learning_rate": 4.999371485517079e-05,
32
+ "loss": 0.6686,
33
+ "step": 20
34
+ },
35
+ {
36
+ "epoch": 0.03,
37
+ "learning_rate": 4.999017969267698e-05,
38
+ "loss": 0.8372,
39
+ "step": 25
40
+ },
41
+ {
42
+ "epoch": 0.03,
43
+ "learning_rate": 4.99858591648381e-05,
44
+ "loss": 0.7397,
45
+ "step": 30
46
+ },
47
+ {
48
+ "epoch": 0.04,
49
+ "learning_rate": 4.9980753407435234e-05,
50
+ "loss": 0.8539,
51
+ "step": 35
52
+ },
53
+ {
54
+ "epoch": 0.04,
55
+ "learning_rate": 4.99748625809268e-05,
56
+ "loss": 1.0454,
57
+ "step": 40
58
+ },
59
+ {
60
+ "epoch": 0.05,
61
+ "learning_rate": 4.9968186870443544e-05,
62
+ "loss": 0.7646,
63
+ "step": 45
64
+ },
65
+ {
66
+ "epoch": 0.05,
67
+ "learning_rate": 4.9960726485782755e-05,
68
+ "loss": 0.8626,
69
+ "step": 50
70
+ },
71
+ {
72
+ "epoch": 0.06,
73
+ "learning_rate": 4.995248166140163e-05,
74
+ "loss": 0.8773,
75
+ "step": 55
76
+ },
77
+ {
78
+ "epoch": 0.06,
79
+ "learning_rate": 4.994345265640994e-05,
80
+ "loss": 0.5691,
81
+ "step": 60
82
+ },
83
+ {
84
+ "epoch": 0.07,
85
+ "learning_rate": 4.9933639754561824e-05,
86
+ "loss": 0.6205,
87
+ "step": 65
88
+ },
89
+ {
90
+ "epoch": 0.07,
91
+ "learning_rate": 4.9923043264246965e-05,
92
+ "loss": 0.6391,
93
+ "step": 70
94
+ },
95
+ {
96
+ "epoch": 0.08,
97
+ "learning_rate": 4.9911663518480824e-05,
98
+ "loss": 0.5564,
99
+ "step": 75
100
+ },
101
+ {
102
+ "epoch": 0.09,
103
+ "learning_rate": 4.989950087489419e-05,
104
+ "loss": 0.5848,
105
+ "step": 80
106
+ },
107
+ {
108
+ "epoch": 0.09,
109
+ "learning_rate": 4.9886555715721964e-05,
110
+ "loss": 0.9124,
111
+ "step": 85
112
+ },
113
+ {
114
+ "epoch": 0.1,
115
+ "learning_rate": 4.9872828447791135e-05,
116
+ "loss": 0.5695,
117
+ "step": 90
118
+ },
119
+ {
120
+ "epoch": 0.1,
121
+ "learning_rate": 4.985831950250798e-05,
122
+ "loss": 0.5616,
123
+ "step": 95
124
+ },
125
+ {
126
+ "epoch": 0.11,
127
+ "learning_rate": 4.9843029335844535e-05,
128
+ "loss": 0.6667,
129
+ "step": 100
130
+ },
131
+ {
132
+ "epoch": 0.11,
133
+ "learning_rate": 4.982695842832421e-05,
134
+ "loss": 0.7367,
135
+ "step": 105
136
+ },
137
+ {
138
+ "epoch": 0.12,
139
+ "learning_rate": 4.9810107285006785e-05,
140
+ "loss": 0.9258,
141
+ "step": 110
142
+ },
143
+ {
144
+ "epoch": 0.12,
145
+ "learning_rate": 4.979247643547242e-05,
146
+ "loss": 0.8087,
147
+ "step": 115
148
+ },
149
+ {
150
+ "epoch": 0.13,
151
+ "learning_rate": 4.977406643380511e-05,
152
+ "loss": 0.8627,
153
+ "step": 120
154
+ },
155
+ {
156
+ "epoch": 0.13,
157
+ "learning_rate": 4.97548778585752e-05,
158
+ "loss": 0.633,
159
+ "step": 125
160
+ },
161
+ {
162
+ "epoch": 0.14,
163
+ "learning_rate": 4.973491131282127e-05,
164
+ "loss": 1.0985,
165
+ "step": 130
166
+ },
167
+ {
168
+ "epoch": 0.14,
169
+ "learning_rate": 4.971416742403112e-05,
170
+ "loss": 0.9516,
171
+ "step": 135
172
+ },
173
+ {
174
+ "epoch": 0.15,
175
+ "learning_rate": 4.969264684412208e-05,
176
+ "loss": 0.8711,
177
+ "step": 140
178
+ },
179
+ {
180
+ "epoch": 0.16,
181
+ "learning_rate": 4.967035024942054e-05,
182
+ "loss": 0.7193,
183
+ "step": 145
184
+ },
185
+ {
186
+ "epoch": 0.16,
187
+ "learning_rate": 4.9647278340640644e-05,
188
+ "loss": 0.8416,
189
+ "step": 150
190
+ },
191
+ {
192
+ "epoch": 0.17,
193
+ "learning_rate": 4.9623431842862335e-05,
194
+ "loss": 0.6761,
195
+ "step": 155
196
+ },
197
+ {
198
+ "epoch": 0.17,
199
+ "learning_rate": 4.9598811505508504e-05,
200
+ "loss": 0.6659,
201
+ "step": 160
202
+ },
203
+ {
204
+ "epoch": 0.18,
205
+ "learning_rate": 4.957341810232147e-05,
206
+ "loss": 0.6969,
207
+ "step": 165
208
+ },
209
+ {
210
+ "epoch": 0.18,
211
+ "learning_rate": 4.954725243133868e-05,
212
+ "loss": 0.8674,
213
+ "step": 170
214
+ },
215
+ {
216
+ "epoch": 0.19,
217
+ "learning_rate": 4.952031531486758e-05,
218
+ "loss": 0.8668,
219
+ "step": 175
220
+ },
221
+ {
222
+ "epoch": 0.19,
223
+ "learning_rate": 4.949260759945984e-05,
224
+ "loss": 0.7499,
225
+ "step": 180
226
+ },
227
+ {
228
+ "epoch": 0.2,
229
+ "learning_rate": 4.946413015588466e-05,
230
+ "loss": 1.0306,
231
+ "step": 185
232
+ },
233
+ {
234
+ "epoch": 0.2,
235
+ "learning_rate": 4.9434883879101496e-05,
236
+ "loss": 0.8853,
237
+ "step": 190
238
+ },
239
+ {
240
+ "epoch": 0.21,
241
+ "learning_rate": 4.940486968823188e-05,
242
+ "loss": 0.8703,
243
+ "step": 195
244
+ },
245
+ {
246
+ "epoch": 0.21,
247
+ "learning_rate": 4.937408852653055e-05,
248
+ "loss": 0.8031,
249
+ "step": 200
250
+ },
251
+ {
252
+ "epoch": 0.22,
253
+ "learning_rate": 4.934254136135581e-05,
254
+ "loss": 1.2864,
255
+ "step": 205
256
+ },
257
+ {
258
+ "epoch": 0.22,
259
+ "learning_rate": 4.93102291841391e-05,
260
+ "loss": 0.6821,
261
+ "step": 210
262
+ },
263
+ {
264
+ "epoch": 0.23,
265
+ "learning_rate": 4.9277153010353895e-05,
266
+ "loss": 0.7472,
267
+ "step": 215
268
+ },
269
+ {
270
+ "epoch": 0.24,
271
+ "learning_rate": 4.9243313879483734e-05,
272
+ "loss": 1.2898,
273
+ "step": 220
274
+ },
275
+ {
276
+ "epoch": 0.24,
277
+ "learning_rate": 4.920871285498958e-05,
278
+ "loss": 1.0007,
279
+ "step": 225
280
+ },
281
+ {
282
+ "epoch": 0.25,
283
+ "learning_rate": 4.917335102427642e-05,
284
+ "loss": 0.8147,
285
+ "step": 230
286
+ },
287
+ {
288
+ "epoch": 0.25,
289
+ "learning_rate": 4.913722949865902e-05,
290
+ "loss": 0.771,
291
+ "step": 235
292
+ },
293
+ {
294
+ "epoch": 0.26,
295
+ "learning_rate": 4.91003494133271e-05,
296
+ "loss": 0.8844,
297
+ "step": 240
298
+ },
299
+ {
300
+ "epoch": 0.26,
301
+ "learning_rate": 4.9062711927309564e-05,
302
+ "loss": 0.7669,
303
+ "step": 245
304
+ },
305
+ {
306
+ "epoch": 0.27,
307
+ "learning_rate": 4.902431822343813e-05,
308
+ "loss": 1.0498,
309
+ "step": 250
310
+ },
311
+ {
312
+ "epoch": 0.27,
313
+ "learning_rate": 4.898516950831015e-05,
314
+ "loss": 0.5262,
315
+ "step": 255
316
+ },
317
+ {
318
+ "epoch": 0.28,
319
+ "learning_rate": 4.894526701225068e-05,
320
+ "loss": 0.8268,
321
+ "step": 260
322
+ },
323
+ {
324
+ "epoch": 0.28,
325
+ "learning_rate": 4.8904611989273804e-05,
326
+ "loss": 1.1978,
327
+ "step": 265
328
+ },
329
+ {
330
+ "epoch": 0.29,
331
+ "learning_rate": 4.8863205717043257e-05,
332
+ "loss": 0.7573,
333
+ "step": 270
334
+ },
335
+ {
336
+ "epoch": 0.29,
337
+ "learning_rate": 4.882104949683225e-05,
338
+ "loss": 0.9093,
339
+ "step": 275
340
+ },
341
+ {
342
+ "epoch": 0.3,
343
+ "learning_rate": 4.877814465348256e-05,
344
+ "loss": 0.5426,
345
+ "step": 280
346
+ },
347
+ {
348
+ "epoch": 0.31,
349
+ "learning_rate": 4.873449253536295e-05,
350
+ "loss": 0.5552,
351
+ "step": 285
352
+ },
353
+ {
354
+ "epoch": 0.31,
355
+ "learning_rate": 4.8690094514326713e-05,
356
+ "loss": 0.756,
357
+ "step": 290
358
+ },
359
+ {
360
+ "epoch": 0.32,
361
+ "learning_rate": 4.864495198566863e-05,
362
+ "loss": 0.8122,
363
+ "step": 295
364
+ },
365
+ {
366
+ "epoch": 0.32,
367
+ "learning_rate": 4.859906636808108e-05,
368
+ "loss": 0.6565,
369
+ "step": 300
370
+ },
371
+ {
372
+ "epoch": 0.33,
373
+ "learning_rate": 4.855243910360948e-05,
374
+ "loss": 0.7606,
375
+ "step": 305
376
+ },
377
+ {
378
+ "epoch": 0.33,
379
+ "learning_rate": 4.8505071657606936e-05,
380
+ "loss": 0.6584,
381
+ "step": 310
382
+ },
383
+ {
384
+ "epoch": 0.34,
385
+ "learning_rate": 4.845696551868823e-05,
386
+ "loss": 0.8891,
387
+ "step": 315
388
+ },
389
+ {
390
+ "epoch": 0.34,
391
+ "learning_rate": 4.840812219868299e-05,
392
+ "loss": 0.7888,
393
+ "step": 320
394
+ },
395
+ {
396
+ "epoch": 0.35,
397
+ "learning_rate": 4.835854323258822e-05,
398
+ "loss": 0.804,
399
+ "step": 325
400
+ },
401
+ {
402
+ "epoch": 0.35,
403
+ "learning_rate": 4.830823017852004e-05,
404
+ "loss": 0.6016,
405
+ "step": 330
406
+ },
407
+ {
408
+ "epoch": 0.36,
409
+ "learning_rate": 4.825718461766473e-05,
410
+ "loss": 0.7443,
411
+ "step": 335
412
+ },
413
+ {
414
+ "epoch": 0.36,
415
+ "learning_rate": 4.820540815422901e-05,
416
+ "loss": 0.7805,
417
+ "step": 340
418
+ },
419
+ {
420
+ "epoch": 0.37,
421
+ "learning_rate": 4.815290241538967e-05,
422
+ "loss": 0.578,
423
+ "step": 345
424
+ },
425
+ {
426
+ "epoch": 0.37,
427
+ "learning_rate": 4.809966905124238e-05,
428
+ "loss": 0.7461,
429
+ "step": 350
430
+ },
431
+ {
432
+ "epoch": 0.38,
433
+ "learning_rate": 4.804570973474989e-05,
434
+ "loss": 0.7009,
435
+ "step": 355
436
+ },
437
+ {
438
+ "epoch": 0.39,
439
+ "learning_rate": 4.7991026161689414e-05,
440
+ "loss": 0.8072,
441
+ "step": 360
442
+ },
443
+ {
444
+ "epoch": 0.39,
445
+ "learning_rate": 4.7935620050599326e-05,
446
+ "loss": 0.743,
447
+ "step": 365
448
+ },
449
+ {
450
+ "epoch": 0.4,
451
+ "learning_rate": 4.787949314272521e-05,
452
+ "loss": 0.6266,
453
+ "step": 370
454
+ },
455
+ {
456
+ "epoch": 0.4,
457
+ "learning_rate": 4.782264720196506e-05,
458
+ "loss": 0.8777,
459
+ "step": 375
460
+ },
461
+ {
462
+ "epoch": 0.41,
463
+ "learning_rate": 4.776508401481393e-05,
464
+ "loss": 0.653,
465
+ "step": 380
466
+ },
467
+ {
468
+ "epoch": 0.41,
469
+ "learning_rate": 4.7706805390307716e-05,
470
+ "loss": 0.5811,
471
+ "step": 385
472
+ },
473
+ {
474
+ "epoch": 0.42,
475
+ "learning_rate": 4.764781315996635e-05,
476
+ "loss": 0.5695,
477
+ "step": 390
478
+ },
479
+ {
480
+ "epoch": 0.42,
481
+ "learning_rate": 4.75881091777362e-05,
482
+ "loss": 1.009,
483
+ "step": 395
484
+ },
485
+ {
486
+ "epoch": 0.43,
487
+ "learning_rate": 4.752769531993187e-05,
488
+ "loss": 0.9361,
489
+ "step": 400
490
+ },
491
+ {
492
+ "epoch": 0.43,
493
+ "learning_rate": 4.746657348517716e-05,
494
+ "loss": 0.7177,
495
+ "step": 405
496
+ },
497
+ {
498
+ "epoch": 0.44,
499
+ "learning_rate": 4.7404745594345455e-05,
500
+ "loss": 0.783,
501
+ "step": 410
502
+ },
503
+ {
504
+ "epoch": 0.44,
505
+ "learning_rate": 4.734221359049933e-05,
506
+ "loss": 0.7872,
507
+ "step": 415
508
+ },
509
+ {
510
+ "epoch": 0.45,
511
+ "learning_rate": 4.7278979438829476e-05,
512
+ "loss": 0.9596,
513
+ "step": 420
514
+ },
515
+ {
516
+ "epoch": 0.46,
517
+ "learning_rate": 4.7215045126592975e-05,
518
+ "loss": 0.6286,
519
+ "step": 425
520
+ },
521
+ {
522
+ "epoch": 0.46,
523
+ "learning_rate": 4.7150412663050806e-05,
524
+ "loss": 0.6694,
525
+ "step": 430
526
+ },
527
+ {
528
+ "epoch": 0.47,
529
+ "learning_rate": 4.708508407940474e-05,
530
+ "loss": 1.1083,
531
+ "step": 435
532
+ },
533
+ {
534
+ "epoch": 0.47,
535
+ "learning_rate": 4.701906142873348e-05,
536
+ "loss": 0.8941,
537
+ "step": 440
538
+ },
539
+ {
540
+ "epoch": 0.48,
541
+ "learning_rate": 4.695234678592813e-05,
542
+ "loss": 0.5684,
543
+ "step": 445
544
+ },
545
+ {
546
+ "epoch": 0.48,
547
+ "learning_rate": 4.688494224762703e-05,
548
+ "loss": 0.6082,
549
+ "step": 450
550
+ },
551
+ {
552
+ "epoch": 0.49,
553
+ "learning_rate": 4.68168499321498e-05,
554
+ "loss": 0.6237,
555
+ "step": 455
556
+ },
557
+ {
558
+ "epoch": 0.49,
559
+ "learning_rate": 4.674807197943084e-05,
560
+ "loss": 0.7826,
561
+ "step": 460
562
+ },
563
+ {
564
+ "epoch": 0.5,
565
+ "learning_rate": 4.667861055095204e-05,
566
+ "loss": 0.8674,
567
+ "step": 465
568
+ },
569
+ {
570
+ "epoch": 0.5,
571
+ "learning_rate": 4.660846782967482e-05,
572
+ "loss": 0.6158,
573
+ "step": 470
574
+ },
575
+ {
576
+ "epoch": 0.51,
577
+ "learning_rate": 4.6537646019971606e-05,
578
+ "loss": 0.9251,
579
+ "step": 475
580
+ },
581
+ {
582
+ "epoch": 0.51,
583
+ "learning_rate": 4.6466147347556464e-05,
584
+ "loss": 0.3553,
585
+ "step": 480
586
+ },
587
+ {
588
+ "epoch": 0.52,
589
+ "learning_rate": 4.639397405941523e-05,
590
+ "loss": 0.6503,
591
+ "step": 485
592
+ },
593
+ {
594
+ "epoch": 0.52,
595
+ "learning_rate": 4.632112842373487e-05,
596
+ "loss": 0.6233,
597
+ "step": 490
598
+ },
599
+ {
600
+ "epoch": 0.53,
601
+ "learning_rate": 4.6247612729832136e-05,
602
+ "loss": 0.893,
603
+ "step": 495
604
+ },
605
+ {
606
+ "epoch": 0.54,
607
+ "learning_rate": 4.617342928808171e-05,
608
+ "loss": 0.6042,
609
+ "step": 500
610
+ },
611
+ {
612
+ "epoch": 0.54,
613
+ "learning_rate": 4.609858042984358e-05,
614
+ "loss": 0.6552,
615
+ "step": 505
616
+ },
617
+ {
618
+ "epoch": 0.55,
619
+ "learning_rate": 4.602306850738968e-05,
620
+ "loss": 0.7058,
621
+ "step": 510
622
+ },
623
+ {
624
+ "epoch": 0.55,
625
+ "learning_rate": 4.5946895893830107e-05,
626
+ "loss": 0.59,
627
+ "step": 515
628
+ },
629
+ {
630
+ "epoch": 0.56,
631
+ "learning_rate": 4.587006498303843e-05,
632
+ "loss": 0.7338,
633
+ "step": 520
634
+ },
635
+ {
636
+ "epoch": 0.56,
637
+ "learning_rate": 4.5792578189576517e-05,
638
+ "loss": 0.7929,
639
+ "step": 525
640
+ },
641
+ {
642
+ "epoch": 0.57,
643
+ "learning_rate": 4.5714437948618624e-05,
644
+ "loss": 0.5103,
645
+ "step": 530
646
+ },
647
+ {
648
+ "epoch": 0.57,
649
+ "learning_rate": 4.563564671587487e-05,
650
+ "loss": 0.6799,
651
+ "step": 535
652
+ },
653
+ {
654
+ "epoch": 0.58,
655
+ "learning_rate": 4.555620696751407e-05,
656
+ "loss": 1.249,
657
+ "step": 540
658
+ },
659
+ {
660
+ "epoch": 0.58,
661
+ "learning_rate": 4.5476121200085934e-05,
662
+ "loss": 0.7596,
663
+ "step": 545
664
+ },
665
+ {
666
+ "epoch": 0.59,
667
+ "learning_rate": 4.5395391930442536e-05,
668
+ "loss": 0.695,
669
+ "step": 550
670
+ },
671
+ {
672
+ "epoch": 0.59,
673
+ "learning_rate": 4.531402169565933e-05,
674
+ "loss": 0.7904,
675
+ "step": 555
676
+ },
677
+ {
678
+ "epoch": 0.6,
679
+ "learning_rate": 4.52320130529553e-05,
680
+ "loss": 0.5093,
681
+ "step": 560
682
+ },
683
+ {
684
+ "epoch": 0.6,
685
+ "learning_rate": 4.51493685796127e-05,
686
+ "loss": 0.5815,
687
+ "step": 565
688
+ },
689
+ {
690
+ "epoch": 0.61,
691
+ "learning_rate": 4.5066090872895944e-05,
692
+ "loss": 0.7107,
693
+ "step": 570
694
+ },
695
+ {
696
+ "epoch": 0.62,
697
+ "learning_rate": 4.4982182549970105e-05,
698
+ "loss": 0.8838,
699
+ "step": 575
700
+ },
701
+ {
702
+ "epoch": 0.62,
703
+ "learning_rate": 4.489764624781859e-05,
704
+ "loss": 0.6607,
705
+ "step": 580
706
+ },
707
+ {
708
+ "epoch": 0.63,
709
+ "learning_rate": 4.481248462316026e-05,
710
+ "loss": 0.9362,
711
+ "step": 585
712
+ },
713
+ {
714
+ "epoch": 0.63,
715
+ "learning_rate": 4.472670035236597e-05,
716
+ "loss": 0.7114,
717
+ "step": 590
718
+ },
719
+ {
720
+ "epoch": 0.64,
721
+ "learning_rate": 4.4640296131374474e-05,
722
+ "loss": 0.8569,
723
+ "step": 595
724
+ },
725
+ {
726
+ "epoch": 0.64,
727
+ "learning_rate": 4.4553274675607636e-05,
728
+ "loss": 0.8141,
729
+ "step": 600
730
+ },
731
+ {
732
+ "epoch": 0.65,
733
+ "learning_rate": 4.446563871988517e-05,
734
+ "loss": 0.7217,
735
+ "step": 605
736
+ },
737
+ {
738
+ "epoch": 0.65,
739
+ "learning_rate": 4.4377391018338624e-05,
740
+ "loss": 0.5951,
741
+ "step": 610
742
+ },
743
+ {
744
+ "epoch": 0.66,
745
+ "learning_rate": 4.4288534344324884e-05,
746
+ "loss": 0.616,
747
+ "step": 615
748
+ },
749
+ {
750
+ "epoch": 0.66,
751
+ "learning_rate": 4.419907149033896e-05,
752
+ "loss": 0.8424,
753
+ "step": 620
754
+ },
755
+ {
756
+ "epoch": 0.67,
757
+ "learning_rate": 4.410900526792627e-05,
758
+ "loss": 0.6658,
759
+ "step": 625
760
+ },
761
+ {
762
+ "epoch": 0.67,
763
+ "learning_rate": 4.401833850759428e-05,
764
+ "loss": 0.7002,
765
+ "step": 630
766
+ },
767
+ {
768
+ "epoch": 0.68,
769
+ "learning_rate": 4.392707405872351e-05,
770
+ "loss": 0.6905,
771
+ "step": 635
772
+ },
773
+ {
774
+ "epoch": 0.69,
775
+ "learning_rate": 4.383521478947803e-05,
776
+ "loss": 0.759,
777
+ "step": 640
778
+ },
779
+ {
780
+ "epoch": 0.69,
781
+ "learning_rate": 4.37427635867153e-05,
782
+ "loss": 0.6635,
783
+ "step": 645
784
+ },
785
+ {
786
+ "epoch": 0.7,
787
+ "learning_rate": 4.364972335589544e-05,
788
+ "loss": 0.9038,
789
+ "step": 650
790
+ },
791
+ {
792
+ "epoch": 0.7,
793
+ "learning_rate": 4.355609702098995e-05,
794
+ "loss": 0.9281,
795
+ "step": 655
796
+ },
797
+ {
798
+ "epoch": 0.71,
799
+ "learning_rate": 4.34618875243898e-05,
800
+ "loss": 0.6037,
801
+ "step": 660
802
+ },
803
+ {
804
+ "epoch": 0.71,
805
+ "learning_rate": 4.3367097826812935e-05,
806
+ "loss": 0.7123,
807
+ "step": 665
808
+ },
809
+ {
810
+ "epoch": 0.72,
811
+ "learning_rate": 4.3271730907211274e-05,
812
+ "loss": 0.8659,
813
+ "step": 670
814
+ },
815
+ {
816
+ "epoch": 0.72,
817
+ "learning_rate": 4.3175789762677055e-05,
818
+ "loss": 0.885,
819
+ "step": 675
820
+ },
821
+ {
822
+ "epoch": 0.73,
823
+ "learning_rate": 4.3079277408348665e-05,
824
+ "loss": 0.9043,
825
+ "step": 680
826
+ },
827
+ {
828
+ "epoch": 0.73,
829
+ "learning_rate": 4.298219687731587e-05,
830
+ "loss": 0.6392,
831
+ "step": 685
832
+ },
833
+ {
834
+ "epoch": 0.74,
835
+ "learning_rate": 4.2884551220524525e-05,
836
+ "loss": 0.9321,
837
+ "step": 690
838
+ },
839
+ {
840
+ "epoch": 0.74,
841
+ "learning_rate": 4.278634350668065e-05,
842
+ "loss": 0.8969,
843
+ "step": 695
844
+ },
845
+ {
846
+ "epoch": 0.75,
847
+ "learning_rate": 4.2687576822154e-05,
848
+ "loss": 0.5849,
849
+ "step": 700
850
+ },
851
+ {
852
+ "epoch": 0.75,
853
+ "learning_rate": 4.2588254270881104e-05,
854
+ "loss": 0.6908,
855
+ "step": 705
856
+ },
857
+ {
858
+ "epoch": 0.76,
859
+ "learning_rate": 4.248837897426766e-05,
860
+ "loss": 0.8788,
861
+ "step": 710
862
+ },
863
+ {
864
+ "epoch": 0.77,
865
+ "learning_rate": 4.238795407109052e-05,
866
+ "loss": 0.7171,
867
+ "step": 715
868
+ },
869
+ {
870
+ "epoch": 0.77,
871
+ "learning_rate": 4.228698271739894e-05,
872
+ "loss": 0.8489,
873
+ "step": 720
874
+ },
875
+ {
876
+ "epoch": 0.78,
877
+ "learning_rate": 4.218546808641549e-05,
878
+ "loss": 0.7057,
879
+ "step": 725
880
+ },
881
+ {
882
+ "epoch": 0.78,
883
+ "learning_rate": 4.208341336843629e-05,
884
+ "loss": 0.7711,
885
+ "step": 730
886
+ },
887
+ {
888
+ "epoch": 0.79,
889
+ "learning_rate": 4.198082177073075e-05,
890
+ "loss": 0.7608,
891
+ "step": 735
892
+ },
893
+ {
894
+ "epoch": 0.79,
895
+ "learning_rate": 4.1877696517440755e-05,
896
+ "loss": 0.6685,
897
+ "step": 740
898
+ },
899
+ {
900
+ "epoch": 0.8,
901
+ "learning_rate": 4.17740408494794e-05,
902
+ "loss": 1.0127,
903
+ "step": 745
904
+ },
905
+ {
906
+ "epoch": 0.8,
907
+ "learning_rate": 4.1669858024429085e-05,
908
+ "loss": 1.0633,
909
+ "step": 750
910
+ },
911
+ {
912
+ "epoch": 0.81,
913
+ "learning_rate": 4.156515131643913e-05,
914
+ "loss": 0.9283,
915
+ "step": 755
916
+ },
917
+ {
918
+ "epoch": 0.81,
919
+ "learning_rate": 4.145992401612293e-05,
920
+ "loss": 0.8288,
921
+ "step": 760
922
+ },
923
+ {
924
+ "epoch": 0.82,
925
+ "learning_rate": 4.135417943045451e-05,
926
+ "loss": 0.6876,
927
+ "step": 765
928
+ },
929
+ {
930
+ "epoch": 0.82,
931
+ "learning_rate": 4.12479208826646e-05,
932
+ "loss": 0.5607,
933
+ "step": 770
934
+ },
935
+ {
936
+ "epoch": 0.83,
937
+ "learning_rate": 4.1141151712136185e-05,
938
+ "loss": 0.9306,
939
+ "step": 775
940
+ },
941
+ {
942
+ "epoch": 0.84,
943
+ "learning_rate": 4.103387527429957e-05,
944
+ "loss": 0.8383,
945
+ "step": 780
946
+ },
947
+ {
948
+ "epoch": 0.84,
949
+ "learning_rate": 4.092609494052695e-05,
950
+ "loss": 0.6689,
951
+ "step": 785
952
+ },
953
+ {
954
+ "epoch": 0.85,
955
+ "learning_rate": 4.0817814098026424e-05,
956
+ "loss": 0.8616,
957
+ "step": 790
958
+ },
959
+ {
960
+ "epoch": 0.85,
961
+ "learning_rate": 4.070903614973555e-05,
962
+ "loss": 0.9265,
963
+ "step": 795
964
+ },
965
+ {
966
+ "epoch": 0.86,
967
+ "learning_rate": 4.059976451421441e-05,
968
+ "loss": 0.6806,
969
+ "step": 800
970
+ },
971
+ {
972
+ "epoch": 0.86,
973
+ "learning_rate": 4.0490002625538195e-05,
974
+ "loss": 0.7305,
975
+ "step": 805
976
+ },
977
+ {
978
+ "epoch": 0.87,
979
+ "learning_rate": 4.0379753933189236e-05,
980
+ "loss": 0.689,
981
+ "step": 810
982
+ },
983
+ {
984
+ "epoch": 0.87,
985
+ "learning_rate": 4.026902190194864e-05,
986
+ "loss": 0.9028,
987
+ "step": 815
988
+ },
989
+ {
990
+ "epoch": 0.88,
991
+ "learning_rate": 4.0157810011787376e-05,
992
+ "loss": 0.7079,
993
+ "step": 820
994
+ },
995
+ {
996
+ "epoch": 0.88,
997
+ "learning_rate": 4.004612175775693e-05,
998
+ "loss": 0.7397,
999
+ "step": 825
1000
+ },
1001
+ {
1002
+ "epoch": 0.89,
1003
+ "learning_rate": 3.9933960649879434e-05,
1004
+ "loss": 0.6809,
1005
+ "step": 830
1006
+ },
1007
+ {
1008
+ "epoch": 0.89,
1009
+ "learning_rate": 3.98213302130374e-05,
1010
+ "loss": 0.7632,
1011
+ "step": 835
1012
+ },
1013
+ {
1014
+ "epoch": 0.9,
1015
+ "learning_rate": 3.970823398686292e-05,
1016
+ "loss": 0.8833,
1017
+ "step": 840
1018
+ },
1019
+ {
1020
+ "epoch": 0.9,
1021
+ "learning_rate": 3.959467552562642e-05,
1022
+ "loss": 1.1581,
1023
+ "step": 845
1024
+ },
1025
+ {
1026
+ "epoch": 0.91,
1027
+ "learning_rate": 3.948065839812497e-05,
1028
+ "loss": 0.8152,
1029
+ "step": 850
1030
+ },
1031
+ {
1032
+ "epoch": 0.92,
1033
+ "learning_rate": 3.936618618757012e-05,
1034
+ "loss": 0.7035,
1035
+ "step": 855
1036
+ },
1037
+ {
1038
+ "epoch": 0.92,
1039
+ "learning_rate": 3.9251262491475314e-05,
1040
+ "loss": 0.6862,
1041
+ "step": 860
1042
+ },
1043
+ {
1044
+ "epoch": 0.93,
1045
+ "learning_rate": 3.9135890921542795e-05,
1046
+ "loss": 0.6714,
1047
+ "step": 865
1048
+ },
1049
+ {
1050
+ "epoch": 0.93,
1051
+ "learning_rate": 3.902007510355014e-05,
1052
+ "loss": 0.6129,
1053
+ "step": 870
1054
+ },
1055
+ {
1056
+ "epoch": 0.94,
1057
+ "learning_rate": 3.8903818677236256e-05,
1058
+ "loss": 0.5749,
1059
+ "step": 875
1060
+ },
1061
+ {
1062
+ "epoch": 0.94,
1063
+ "learning_rate": 3.878712529618707e-05,
1064
+ "loss": 0.7528,
1065
+ "step": 880
1066
+ },
1067
+ {
1068
+ "epoch": 0.95,
1069
+ "learning_rate": 3.866999862772063e-05,
1070
+ "loss": 0.8081,
1071
+ "step": 885
1072
+ },
1073
+ {
1074
+ "epoch": 0.95,
1075
+ "learning_rate": 3.8552442352771925e-05,
1076
+ "loss": 0.2889,
1077
+ "step": 890
1078
+ },
1079
+ {
1080
+ "epoch": 0.96,
1081
+ "learning_rate": 3.8434460165777145e-05,
1082
+ "loss": 0.5895,
1083
+ "step": 895
1084
+ },
1085
+ {
1086
+ "epoch": 0.96,
1087
+ "learning_rate": 3.831605577455761e-05,
1088
+ "loss": 0.7995,
1089
+ "step": 900
1090
+ },
1091
+ {
1092
+ "epoch": 0.97,
1093
+ "learning_rate": 3.819723290020323e-05,
1094
+ "loss": 0.8598,
1095
+ "step": 905
1096
+ },
1097
+ {
1098
+ "epoch": 0.97,
1099
+ "learning_rate": 3.807799527695557e-05,
1100
+ "loss": 0.7677,
1101
+ "step": 910
1102
+ },
1103
+ {
1104
+ "epoch": 0.98,
1105
+ "learning_rate": 3.79583466520905e-05,
1106
+ "loss": 0.6112,
1107
+ "step": 915
1108
+ },
1109
+ {
1110
+ "epoch": 0.99,
1111
+ "learning_rate": 3.78382907858004e-05,
1112
+ "loss": 0.701,
1113
+ "step": 920
1114
+ },
1115
+ {
1116
+ "epoch": 0.99,
1117
+ "learning_rate": 3.7717831451076024e-05,
1118
+ "loss": 0.812,
1119
+ "step": 925
1120
+ },
1121
+ {
1122
+ "epoch": 1.0,
1123
+ "learning_rate": 3.7596972433587915e-05,
1124
+ "loss": 0.8178,
1125
+ "step": 930
1126
+ },
1127
+ {
1128
+ "epoch": 1.0,
1129
+ "learning_rate": 3.7500000000000003e-05,
1130
+ "loss": 0.8653,
1131
+ "step": 935
1132
+ },
1133
+ {
1134
+ "epoch": 1.01,
1135
+ "learning_rate": 3.737843113344485e-05,
1136
+ "loss": 0.4592,
1137
+ "step": 940
1138
+ },
1139
+ {
1140
+ "epoch": 1.01,
1141
+ "learning_rate": 3.72564732504457e-05,
1142
+ "loss": 0.1997,
1143
+ "step": 945
1144
+ },
1145
+ {
1146
+ "epoch": 1.02,
1147
+ "learning_rate": 3.713413018376795e-05,
1148
+ "loss": 0.4832,
1149
+ "step": 950
1150
+ },
1151
+ {
1152
+ "epoch": 1.02,
1153
+ "learning_rate": 3.701140577828207e-05,
1154
+ "loss": 0.5203,
1155
+ "step": 955
1156
+ },
1157
+ {
1158
+ "epoch": 1.03,
1159
+ "learning_rate": 3.68883038908429e-05,
1160
+ "loss": 0.3606,
1161
+ "step": 960
1162
+ },
1163
+ {
1164
+ "epoch": 1.03,
1165
+ "learning_rate": 3.6764828390168374e-05,
1166
+ "loss": 0.4231,
1167
+ "step": 965
1168
+ },
1169
+ {
1170
+ "epoch": 1.04,
1171
+ "learning_rate": 3.664098315671793e-05,
1172
+ "loss": 0.4086,
1173
+ "step": 970
1174
+ },
1175
+ {
1176
+ "epoch": 1.04,
1177
+ "learning_rate": 3.651677208257063e-05,
1178
+ "loss": 0.3105,
1179
+ "step": 975
1180
+ },
1181
+ {
1182
+ "epoch": 1.05,
1183
+ "learning_rate": 3.639219907130276e-05,
1184
+ "loss": 0.3642,
1185
+ "step": 980
1186
+ },
1187
+ {
1188
+ "epoch": 1.05,
1189
+ "learning_rate": 3.626726803786519e-05,
1190
+ "loss": 0.4502,
1191
+ "step": 985
1192
+ },
1193
+ {
1194
+ "epoch": 1.06,
1195
+ "learning_rate": 3.6141982908460364e-05,
1196
+ "loss": 0.4569,
1197
+ "step": 990
1198
+ },
1199
+ {
1200
+ "epoch": 1.07,
1201
+ "learning_rate": 3.601634762041887e-05,
1202
+ "loss": 0.45,
1203
+ "step": 995
1204
+ },
1205
+ {
1206
+ "epoch": 1.07,
1207
+ "learning_rate": 3.5890366122075694e-05,
1208
+ "loss": 0.3306,
1209
+ "step": 1000
1210
+ },
1211
+ {
1212
+ "epoch": 1.08,
1213
+ "learning_rate": 3.576404237264621e-05,
1214
+ "loss": 0.3047,
1215
+ "step": 1005
1216
+ },
1217
+ {
1218
+ "epoch": 1.08,
1219
+ "learning_rate": 3.5637380342101656e-05,
1220
+ "loss": 0.3147,
1221
+ "step": 1010
1222
+ },
1223
+ {
1224
+ "epoch": 1.09,
1225
+ "learning_rate": 3.5510384011044436e-05,
1226
+ "loss": 0.2347,
1227
+ "step": 1015
1228
+ },
1229
+ {
1230
+ "epoch": 1.09,
1231
+ "learning_rate": 3.5383057370583005e-05,
1232
+ "loss": 0.2454,
1233
+ "step": 1020
1234
+ },
1235
+ {
1236
+ "epoch": 1.1,
1237
+ "learning_rate": 3.525540442220644e-05,
1238
+ "loss": 0.4466,
1239
+ "step": 1025
1240
+ },
1241
+ {
1242
+ "epoch": 1.1,
1243
+ "learning_rate": 3.512742917765866e-05,
1244
+ "loss": 0.3689,
1245
+ "step": 1030
1246
+ },
1247
+ {
1248
+ "epoch": 1.11,
1249
+ "learning_rate": 3.499913565881241e-05,
1250
+ "loss": 0.4169,
1251
+ "step": 1035
1252
+ },
1253
+ {
1254
+ "epoch": 1.11,
1255
+ "learning_rate": 3.487052789754279e-05,
1256
+ "loss": 0.4434,
1257
+ "step": 1040
1258
+ },
1259
+ {
1260
+ "epoch": 1.12,
1261
+ "learning_rate": 3.4741609935600614e-05,
1262
+ "loss": 0.2953,
1263
+ "step": 1045
1264
+ },
1265
+ {
1266
+ "epoch": 1.12,
1267
+ "learning_rate": 3.4612385824485337e-05,
1268
+ "loss": 0.3711,
1269
+ "step": 1050
1270
+ },
1271
+ {
1272
+ "epoch": 1.13,
1273
+ "learning_rate": 3.4482859625317766e-05,
1274
+ "loss": 0.2047,
1275
+ "step": 1055
1276
+ },
1277
+ {
1278
+ "epoch": 1.13,
1279
+ "learning_rate": 3.435303540871242e-05,
1280
+ "loss": 0.204,
1281
+ "step": 1060
1282
+ },
1283
+ {
1284
+ "epoch": 1.14,
1285
+ "learning_rate": 3.422291725464959e-05,
1286
+ "loss": 0.3836,
1287
+ "step": 1065
1288
+ },
1289
+ {
1290
+ "epoch": 1.15,
1291
+ "learning_rate": 3.409250925234712e-05,
1292
+ "loss": 0.2568,
1293
+ "step": 1070
1294
+ },
1295
+ {
1296
+ "epoch": 1.15,
1297
+ "learning_rate": 3.396181550013192e-05,
1298
+ "loss": 0.4014,
1299
+ "step": 1075
1300
+ },
1301
+ {
1302
+ "epoch": 1.16,
1303
+ "learning_rate": 3.383084010531114e-05,
1304
+ "loss": 0.4951,
1305
+ "step": 1080
1306
+ },
1307
+ {
1308
+ "epoch": 1.16,
1309
+ "learning_rate": 3.3699587184043105e-05,
1310
+ "loss": 0.34,
1311
+ "step": 1085
1312
+ },
1313
+ {
1314
+ "epoch": 1.17,
1315
+ "learning_rate": 3.356806086120795e-05,
1316
+ "loss": 0.3992,
1317
+ "step": 1090
1318
+ },
1319
+ {
1320
+ "epoch": 1.17,
1321
+ "learning_rate": 3.343626527027798e-05,
1322
+ "loss": 0.3924,
1323
+ "step": 1095
1324
+ },
1325
+ {
1326
+ "epoch": 1.18,
1327
+ "learning_rate": 3.3304204553187815e-05,
1328
+ "loss": 0.1872,
1329
+ "step": 1100
1330
+ },
1331
+ {
1332
+ "epoch": 1.18,
1333
+ "learning_rate": 3.317188286020413e-05,
1334
+ "loss": 0.3238,
1335
+ "step": 1105
1336
+ },
1337
+ {
1338
+ "epoch": 1.19,
1339
+ "learning_rate": 3.303930434979531e-05,
1340
+ "loss": 0.2943,
1341
+ "step": 1110
1342
+ },
1343
+ {
1344
+ "epoch": 1.19,
1345
+ "learning_rate": 3.290647318850074e-05,
1346
+ "loss": 0.3754,
1347
+ "step": 1115
1348
+ },
1349
+ {
1350
+ "epoch": 1.2,
1351
+ "learning_rate": 3.277339355079983e-05,
1352
+ "loss": 0.3159,
1353
+ "step": 1120
1354
+ },
1355
+ {
1356
+ "epoch": 1.2,
1357
+ "learning_rate": 3.2640069618980854e-05,
1358
+ "loss": 0.3763,
1359
+ "step": 1125
1360
+ },
1361
+ {
1362
+ "epoch": 1.21,
1363
+ "learning_rate": 3.2506505583009516e-05,
1364
+ "loss": 0.3898,
1365
+ "step": 1130
1366
+ },
1367
+ {
1368
+ "epoch": 1.22,
1369
+ "learning_rate": 3.2372705640397264e-05,
1370
+ "loss": 0.3006,
1371
+ "step": 1135
1372
+ },
1373
+ {
1374
+ "epoch": 1.22,
1375
+ "learning_rate": 3.223867399606935e-05,
1376
+ "loss": 0.3968,
1377
+ "step": 1140
1378
+ },
1379
+ {
1380
+ "epoch": 1.23,
1381
+ "learning_rate": 3.210441486223274e-05,
1382
+ "loss": 0.3107,
1383
+ "step": 1145
1384
+ },
1385
+ {
1386
+ "epoch": 1.23,
1387
+ "learning_rate": 3.196993245824368e-05,
1388
+ "loss": 0.4036,
1389
+ "step": 1150
1390
+ },
1391
+ {
1392
+ "epoch": 1.24,
1393
+ "learning_rate": 3.183523101047513e-05,
1394
+ "loss": 0.3168,
1395
+ "step": 1155
1396
+ },
1397
+ {
1398
+ "epoch": 1.24,
1399
+ "learning_rate": 3.170031475218393e-05,
1400
+ "loss": 0.2956,
1401
+ "step": 1160
1402
+ },
1403
+ {
1404
+ "epoch": 1.25,
1405
+ "learning_rate": 3.1565187923377746e-05,
1406
+ "loss": 0.3462,
1407
+ "step": 1165
1408
+ },
1409
+ {
1410
+ "epoch": 1.25,
1411
+ "learning_rate": 3.142985477068185e-05,
1412
+ "loss": 0.3532,
1413
+ "step": 1170
1414
+ },
1415
+ {
1416
+ "epoch": 1.26,
1417
+ "learning_rate": 3.129431954720565e-05,
1418
+ "loss": 0.3928,
1419
+ "step": 1175
1420
+ },
1421
+ {
1422
+ "epoch": 1.26,
1423
+ "learning_rate": 3.1158586512409e-05,
1424
+ "loss": 0.4801,
1425
+ "step": 1180
1426
+ },
1427
+ {
1428
+ "epoch": 1.27,
1429
+ "learning_rate": 3.1022659931968395e-05,
1430
+ "loss": 0.4299,
1431
+ "step": 1185
1432
+ },
1433
+ {
1434
+ "epoch": 1.27,
1435
+ "learning_rate": 3.0886544077642865e-05,
1436
+ "loss": 0.4258,
1437
+ "step": 1190
1438
+ },
1439
+ {
1440
+ "epoch": 1.28,
1441
+ "learning_rate": 3.075024322713972e-05,
1442
+ "loss": 0.5112,
1443
+ "step": 1195
1444
+ },
1445
+ {
1446
+ "epoch": 1.28,
1447
+ "learning_rate": 3.0613761663980184e-05,
1448
+ "loss": 0.3401,
1449
+ "step": 1200
1450
+ },
1451
+ {
1452
+ "epoch": 1.29,
1453
+ "learning_rate": 3.0477103677364694e-05,
1454
+ "loss": 0.4322,
1455
+ "step": 1205
1456
+ },
1457
+ {
1458
+ "epoch": 1.3,
1459
+ "learning_rate": 3.0340273562038146e-05,
1460
+ "loss": 0.4011,
1461
+ "step": 1210
1462
+ },
1463
+ {
1464
+ "epoch": 1.3,
1465
+ "learning_rate": 3.0203275618154935e-05,
1466
+ "loss": 0.3879,
1467
+ "step": 1215
1468
+ },
1469
+ {
1470
+ "epoch": 1.31,
1471
+ "learning_rate": 3.0066114151143775e-05,
1472
+ "loss": 0.3586,
1473
+ "step": 1220
1474
+ },
1475
+ {
1476
+ "epoch": 1.31,
1477
+ "learning_rate": 2.9928793471572432e-05,
1478
+ "loss": 0.3994,
1479
+ "step": 1225
1480
+ },
1481
+ {
1482
+ "epoch": 1.32,
1483
+ "learning_rate": 2.9791317895012234e-05,
1484
+ "loss": 0.2322,
1485
+ "step": 1230
1486
+ },
1487
+ {
1488
+ "epoch": 1.32,
1489
+ "learning_rate": 2.965369174190243e-05,
1490
+ "loss": 0.3513,
1491
+ "step": 1235
1492
+ },
1493
+ {
1494
+ "epoch": 1.33,
1495
+ "learning_rate": 2.9515919337414472e-05,
1496
+ "loss": 0.307,
1497
+ "step": 1240
1498
+ },
1499
+ {
1500
+ "epoch": 1.33,
1501
+ "learning_rate": 2.937800501131601e-05,
1502
+ "loss": 0.3364,
1503
+ "step": 1245
1504
+ },
1505
+ {
1506
+ "epoch": 1.34,
1507
+ "learning_rate": 2.9239953097834876e-05,
1508
+ "loss": 0.3243,
1509
+ "step": 1250
1510
+ },
1511
+ {
1512
+ "epoch": 1.34,
1513
+ "learning_rate": 2.910176793552287e-05,
1514
+ "loss": 0.4326,
1515
+ "step": 1255
1516
+ },
1517
+ {
1518
+ "epoch": 1.35,
1519
+ "learning_rate": 2.8963453867119354e-05,
1520
+ "loss": 0.3193,
1521
+ "step": 1260
1522
+ },
1523
+ {
1524
+ "epoch": 1.35,
1525
+ "learning_rate": 2.8825015239414856e-05,
1526
+ "loss": 0.3131,
1527
+ "step": 1265
1528
+ },
1529
+ {
1530
+ "epoch": 1.36,
1531
+ "learning_rate": 2.8686456403114415e-05,
1532
+ "loss": 0.3406,
1533
+ "step": 1270
1534
+ },
1535
+ {
1536
+ "epoch": 1.37,
1537
+ "learning_rate": 2.854778171270085e-05,
1538
+ "loss": 0.3749,
1539
+ "step": 1275
1540
+ },
1541
+ {
1542
+ "epoch": 1.37,
1543
+ "learning_rate": 2.8408995526297926e-05,
1544
+ "loss": 0.334,
1545
+ "step": 1280
1546
+ },
1547
+ {
1548
+ "epoch": 1.38,
1549
+ "learning_rate": 2.8270102205533406e-05,
1550
+ "loss": 0.3929,
1551
+ "step": 1285
1552
+ },
1553
+ {
1554
+ "epoch": 1.38,
1555
+ "learning_rate": 2.8131106115401933e-05,
1556
+ "loss": 0.3972,
1557
+ "step": 1290
1558
+ },
1559
+ {
1560
+ "epoch": 1.39,
1561
+ "learning_rate": 2.7992011624127888e-05,
1562
+ "loss": 0.2296,
1563
+ "step": 1295
1564
+ },
1565
+ {
1566
+ "epoch": 1.39,
1567
+ "learning_rate": 2.7852823103028116e-05,
1568
+ "loss": 0.3938,
1569
+ "step": 1300
1570
+ },
1571
+ {
1572
+ "epoch": 1.4,
1573
+ "learning_rate": 2.771354492637451e-05,
1574
+ "loss": 0.3469,
1575
+ "step": 1305
1576
+ },
1577
+ {
1578
+ "epoch": 1.4,
1579
+ "learning_rate": 2.7574181471256578e-05,
1580
+ "loss": 0.3049,
1581
+ "step": 1310
1582
+ },
1583
+ {
1584
+ "epoch": 1.41,
1585
+ "learning_rate": 2.743473711744387e-05,
1586
+ "loss": 0.3872,
1587
+ "step": 1315
1588
+ },
1589
+ {
1590
+ "epoch": 1.41,
1591
+ "learning_rate": 2.7295216247248327e-05,
1592
+ "loss": 0.2893,
1593
+ "step": 1320
1594
+ },
1595
+ {
1596
+ "epoch": 1.42,
1597
+ "learning_rate": 2.7155623245386584e-05,
1598
+ "loss": 0.3781,
1599
+ "step": 1325
1600
+ },
1601
+ {
1602
+ "epoch": 1.42,
1603
+ "learning_rate": 2.701596249884214e-05,
1604
+ "loss": 0.3755,
1605
+ "step": 1330
1606
+ },
1607
+ {
1608
+ "epoch": 1.43,
1609
+ "learning_rate": 2.6876238396727504e-05,
1610
+ "loss": 0.2317,
1611
+ "step": 1335
1612
+ },
1613
+ {
1614
+ "epoch": 1.43,
1615
+ "learning_rate": 2.6736455330146278e-05,
1616
+ "loss": 0.5266,
1617
+ "step": 1340
1618
+ },
1619
+ {
1620
+ "epoch": 1.44,
1621
+ "learning_rate": 2.6596617692055105e-05,
1622
+ "loss": 0.367,
1623
+ "step": 1345
1624
+ },
1625
+ {
1626
+ "epoch": 1.45,
1627
+ "learning_rate": 2.6456729877125663e-05,
1628
+ "loss": 0.3744,
1629
+ "step": 1350
1630
+ },
1631
+ {
1632
+ "epoch": 1.45,
1633
+ "learning_rate": 2.631679628160655e-05,
1634
+ "loss": 0.4376,
1635
+ "step": 1355
1636
+ },
1637
+ {
1638
+ "epoch": 1.46,
1639
+ "learning_rate": 2.6176821303185066e-05,
1640
+ "loss": 0.4219,
1641
+ "step": 1360
1642
+ },
1643
+ {
1644
+ "epoch": 1.46,
1645
+ "learning_rate": 2.6036809340849106e-05,
1646
+ "loss": 0.2541,
1647
+ "step": 1365
1648
+ },
1649
+ {
1650
+ "epoch": 1.47,
1651
+ "learning_rate": 2.5896764794748813e-05,
1652
+ "loss": 0.3705,
1653
+ "step": 1370
1654
+ },
1655
+ {
1656
+ "epoch": 1.47,
1657
+ "learning_rate": 2.5756692066058346e-05,
1658
+ "loss": 0.4607,
1659
+ "step": 1375
1660
+ },
1661
+ {
1662
+ "epoch": 1.48,
1663
+ "learning_rate": 2.5616595556837573e-05,
1664
+ "loss": 0.5631,
1665
+ "step": 1380
1666
+ },
1667
+ {
1668
+ "epoch": 1.48,
1669
+ "learning_rate": 2.547647966989371e-05,
1670
+ "loss": 0.5518,
1671
+ "step": 1385
1672
+ },
1673
+ {
1674
+ "epoch": 1.49,
1675
+ "learning_rate": 2.533634880864293e-05,
1676
+ "loss": 0.3245,
1677
+ "step": 1390
1678
+ },
1679
+ {
1680
+ "epoch": 1.49,
1681
+ "learning_rate": 2.519620737697204e-05,
1682
+ "loss": 0.3764,
1683
+ "step": 1395
1684
+ },
1685
+ {
1686
+ "epoch": 1.5,
1687
+ "learning_rate": 2.5056059779100017e-05,
1688
+ "loss": 0.3896,
1689
+ "step": 1400
1690
+ },
1691
+ {
1692
+ "epoch": 1.5,
1693
+ "learning_rate": 2.4915910419439627e-05,
1694
+ "loss": 0.2681,
1695
+ "step": 1405
1696
+ },
1697
+ {
1698
+ "epoch": 1.51,
1699
+ "learning_rate": 2.4775763702459026e-05,
1700
+ "loss": 0.3076,
1701
+ "step": 1410
1702
+ },
1703
+ {
1704
+ "epoch": 1.51,
1705
+ "learning_rate": 2.463562403254327e-05,
1706
+ "loss": 0.4762,
1707
+ "step": 1415
1708
+ },
1709
+ {
1710
+ "epoch": 1.52,
1711
+ "learning_rate": 2.4495495813855994e-05,
1712
+ "loss": 0.3402,
1713
+ "step": 1420
1714
+ },
1715
+ {
1716
+ "epoch": 1.53,
1717
+ "learning_rate": 2.4355383450200957e-05,
1718
+ "loss": 0.3426,
1719
+ "step": 1425
1720
+ },
1721
+ {
1722
+ "epoch": 1.53,
1723
+ "learning_rate": 2.421529134488359e-05,
1724
+ "loss": 0.323,
1725
+ "step": 1430
1726
+ },
1727
+ {
1728
+ "epoch": 1.54,
1729
+ "learning_rate": 2.407522390057272e-05,
1730
+ "loss": 0.2517,
1731
+ "step": 1435
1732
+ },
1733
+ {
1734
+ "epoch": 1.54,
1735
+ "learning_rate": 2.3935185519162133e-05,
1736
+ "loss": 0.2985,
1737
+ "step": 1440
1738
+ },
1739
+ {
1740
+ "epoch": 1.55,
1741
+ "learning_rate": 2.3795180601632257e-05,
1742
+ "loss": 0.377,
1743
+ "step": 1445
1744
+ },
1745
+ {
1746
+ "epoch": 1.55,
1747
+ "learning_rate": 2.3655213547911846e-05,
1748
+ "loss": 0.3976,
1749
+ "step": 1450
1750
+ },
1751
+ {
1752
+ "epoch": 1.56,
1753
+ "learning_rate": 2.3515288756739732e-05,
1754
+ "loss": 0.5024,
1755
+ "step": 1455
1756
+ },
1757
+ {
1758
+ "epoch": 1.56,
1759
+ "learning_rate": 2.3375410625526527e-05,
1760
+ "loss": 0.3413,
1761
+ "step": 1460
1762
+ },
1763
+ {
1764
+ "epoch": 1.57,
1765
+ "learning_rate": 2.3235583550216507e-05,
1766
+ "loss": 0.2962,
1767
+ "step": 1465
1768
+ },
1769
+ {
1770
+ "epoch": 1.57,
1771
+ "learning_rate": 2.309581192514937e-05,
1772
+ "loss": 0.3109,
1773
+ "step": 1470
1774
+ },
1775
+ {
1776
+ "epoch": 1.58,
1777
+ "learning_rate": 2.295610014292221e-05,
1778
+ "loss": 0.313,
1779
+ "step": 1475
1780
+ },
1781
+ {
1782
+ "epoch": 1.58,
1783
+ "learning_rate": 2.2816452594251454e-05,
1784
+ "loss": 0.4659,
1785
+ "step": 1480
1786
+ },
1787
+ {
1788
+ "epoch": 1.59,
1789
+ "learning_rate": 2.2676873667834822e-05,
1790
+ "loss": 0.3142,
1791
+ "step": 1485
1792
+ },
1793
+ {
1794
+ "epoch": 1.6,
1795
+ "learning_rate": 2.253736775021349e-05,
1796
+ "loss": 0.4029,
1797
+ "step": 1490
1798
+ },
1799
+ {
1800
+ "epoch": 1.6,
1801
+ "learning_rate": 2.239793922563415e-05,
1802
+ "loss": 0.4598,
1803
+ "step": 1495
1804
+ },
1805
+ {
1806
+ "epoch": 1.61,
1807
+ "learning_rate": 2.22585924759113e-05,
1808
+ "loss": 0.3665,
1809
+ "step": 1500
1810
+ },
1811
+ {
1812
+ "epoch": 1.61,
1813
+ "learning_rate": 2.2119331880289482e-05,
1814
+ "loss": 0.3814,
1815
+ "step": 1505
1816
+ },
1817
+ {
1818
+ "epoch": 1.62,
1819
+ "learning_rate": 2.1980161815305685e-05,
1820
+ "loss": 0.3147,
1821
+ "step": 1510
1822
+ },
1823
+ {
1824
+ "epoch": 1.62,
1825
+ "learning_rate": 2.1841086654651787e-05,
1826
+ "loss": 0.4053,
1827
+ "step": 1515
1828
+ },
1829
+ {
1830
+ "epoch": 1.63,
1831
+ "learning_rate": 2.1702110769037138e-05,
1832
+ "loss": 0.3571,
1833
+ "step": 1520
1834
+ },
1835
+ {
1836
+ "epoch": 1.63,
1837
+ "learning_rate": 2.1563238526051128e-05,
1838
+ "loss": 0.4268,
1839
+ "step": 1525
1840
+ },
1841
+ {
1842
+ "epoch": 1.64,
1843
+ "learning_rate": 2.1424474290026002e-05,
1844
+ "loss": 0.2449,
1845
+ "step": 1530
1846
+ },
1847
+ {
1848
+ "epoch": 1.64,
1849
+ "learning_rate": 2.128582242189971e-05,
1850
+ "loss": 0.3293,
1851
+ "step": 1535
1852
+ },
1853
+ {
1854
+ "epoch": 1.65,
1855
+ "learning_rate": 2.114728727907875e-05,
1856
+ "loss": 0.3671,
1857
+ "step": 1540
1858
+ },
1859
+ {
1860
+ "epoch": 1.65,
1861
+ "learning_rate": 2.1008873215301346e-05,
1862
+ "loss": 0.3639,
1863
+ "step": 1545
1864
+ },
1865
+ {
1866
+ "epoch": 1.66,
1867
+ "learning_rate": 2.0870584580500555e-05,
1868
+ "loss": 0.328,
1869
+ "step": 1550
1870
+ },
1871
+ {
1872
+ "epoch": 1.66,
1873
+ "learning_rate": 2.0732425720667605e-05,
1874
+ "loss": 0.3223,
1875
+ "step": 1555
1876
+ },
1877
+ {
1878
+ "epoch": 1.67,
1879
+ "learning_rate": 2.0594400977715268e-05,
1880
+ "loss": 0.4182,
1881
+ "step": 1560
1882
+ },
1883
+ {
1884
+ "epoch": 1.68,
1885
+ "learning_rate": 2.045651468934145e-05,
1886
+ "loss": 0.4449,
1887
+ "step": 1565
1888
+ },
1889
+ {
1890
+ "epoch": 1.68,
1891
+ "learning_rate": 2.0318771188892823e-05,
1892
+ "loss": 0.368,
1893
+ "step": 1570
1894
+ },
1895
+ {
1896
+ "epoch": 1.69,
1897
+ "learning_rate": 2.018117480522871e-05,
1898
+ "loss": 0.237,
1899
+ "step": 1575
1900
+ },
1901
+ {
1902
+ "epoch": 1.69,
1903
+ "learning_rate": 2.0043729862584952e-05,
1904
+ "loss": 0.2892,
1905
+ "step": 1580
1906
+ },
1907
+ {
1908
+ "epoch": 1.7,
1909
+ "learning_rate": 1.99064406804381e-05,
1910
+ "loss": 0.3522,
1911
+ "step": 1585
1912
+ },
1913
+ {
1914
+ "epoch": 1.7,
1915
+ "learning_rate": 1.9769311573369613e-05,
1916
+ "loss": 0.4601,
1917
+ "step": 1590
1918
+ },
1919
+ {
1920
+ "epoch": 1.71,
1921
+ "learning_rate": 1.9632346850930265e-05,
1922
+ "loss": 0.3318,
1923
+ "step": 1595
1924
+ },
1925
+ {
1926
+ "epoch": 1.71,
1927
+ "learning_rate": 1.9495550817504742e-05,
1928
+ "loss": 0.3333,
1929
+ "step": 1600
1930
+ },
1931
+ {
1932
+ "epoch": 1.72,
1933
+ "learning_rate": 1.935892777217633e-05,
1934
+ "loss": 0.3585,
1935
+ "step": 1605
1936
+ },
1937
+ {
1938
+ "epoch": 1.72,
1939
+ "learning_rate": 1.922248200859183e-05,
1940
+ "loss": 0.2718,
1941
+ "step": 1610
1942
+ },
1943
+ {
1944
+ "epoch": 1.73,
1945
+ "learning_rate": 1.908621781482662e-05,
1946
+ "loss": 0.2824,
1947
+ "step": 1615
1948
+ },
1949
+ {
1950
+ "epoch": 1.73,
1951
+ "learning_rate": 1.89501394732499e-05,
1952
+ "loss": 0.2374,
1953
+ "step": 1620
1954
+ },
1955
+ {
1956
+ "epoch": 1.74,
1957
+ "learning_rate": 1.8814251260390067e-05,
1958
+ "loss": 0.3704,
1959
+ "step": 1625
1960
+ },
1961
+ {
1962
+ "epoch": 1.75,
1963
+ "learning_rate": 1.8678557446800403e-05,
1964
+ "loss": 0.3356,
1965
+ "step": 1630
1966
+ },
1967
+ {
1968
+ "epoch": 1.75,
1969
+ "learning_rate": 1.854306229692476e-05,
1970
+ "loss": 0.295,
1971
+ "step": 1635
1972
+ },
1973
+ {
1974
+ "epoch": 1.76,
1975
+ "learning_rate": 1.8407770068963615e-05,
1976
+ "loss": 0.3668,
1977
+ "step": 1640
1978
+ },
1979
+ {
1980
+ "epoch": 1.76,
1981
+ "learning_rate": 1.8272685014740258e-05,
1982
+ "loss": 0.3668,
1983
+ "step": 1645
1984
+ },
1985
+ {
1986
+ "epoch": 1.77,
1987
+ "learning_rate": 1.8137811379567076e-05,
1988
+ "loss": 0.2927,
1989
+ "step": 1650
1990
+ },
1991
+ {
1992
+ "epoch": 1.77,
1993
+ "learning_rate": 1.8003153402112248e-05,
1994
+ "loss": 0.3767,
1995
+ "step": 1655
1996
+ },
1997
+ {
1998
+ "epoch": 1.78,
1999
+ "learning_rate": 1.7868715314266464e-05,
2000
+ "loss": 0.3051,
2001
+ "step": 1660
2002
+ },
2003
+ {
2004
+ "epoch": 1.78,
2005
+ "learning_rate": 1.773450134100997e-05,
2006
+ "loss": 0.2894,
2007
+ "step": 1665
2008
+ },
2009
+ {
2010
+ "epoch": 1.79,
2011
+ "learning_rate": 1.760051570027974e-05,
2012
+ "loss": 0.329,
2013
+ "step": 1670
2014
+ },
2015
+ {
2016
+ "epoch": 1.79,
2017
+ "learning_rate": 1.746676260283699e-05,
2018
+ "loss": 0.3993,
2019
+ "step": 1675
2020
+ },
2021
+ {
2022
+ "epoch": 1.8,
2023
+ "learning_rate": 1.7333246252134767e-05,
2024
+ "loss": 0.2806,
2025
+ "step": 1680
2026
+ },
2027
+ {
2028
+ "epoch": 1.8,
2029
+ "learning_rate": 1.7199970844185943e-05,
2030
+ "loss": 0.359,
2031
+ "step": 1685
2032
+ },
2033
+ {
2034
+ "epoch": 1.81,
2035
+ "learning_rate": 1.706694056743122e-05,
2036
+ "loss": 0.2649,
2037
+ "step": 1690
2038
+ },
2039
+ {
2040
+ "epoch": 1.81,
2041
+ "learning_rate": 1.693415960260764e-05,
2042
+ "loss": 0.3227,
2043
+ "step": 1695
2044
+ },
2045
+ {
2046
+ "epoch": 1.82,
2047
+ "learning_rate": 1.6801632122617095e-05,
2048
+ "loss": 0.2917,
2049
+ "step": 1700
2050
+ },
2051
+ {
2052
+ "epoch": 1.83,
2053
+ "learning_rate": 1.6669362292395214e-05,
2054
+ "loss": 0.4163,
2055
+ "step": 1705
2056
+ },
2057
+ {
2058
+ "epoch": 1.83,
2059
+ "learning_rate": 1.6537354268780498e-05,
2060
+ "loss": 0.4411,
2061
+ "step": 1710
2062
+ },
2063
+ {
2064
+ "epoch": 1.84,
2065
+ "learning_rate": 1.6405612200383645e-05,
2066
+ "loss": 0.2494,
2067
+ "step": 1715
2068
+ },
2069
+ {
2070
+ "epoch": 1.84,
2071
+ "learning_rate": 1.6274140227457213e-05,
2072
+ "loss": 0.5221,
2073
+ "step": 1720
2074
+ },
2075
+ {
2076
+ "epoch": 1.85,
2077
+ "learning_rate": 1.6142942481765448e-05,
2078
+ "loss": 0.3146,
2079
+ "step": 1725
2080
+ },
2081
+ {
2082
+ "epoch": 1.85,
2083
+ "learning_rate": 1.6012023086454503e-05,
2084
+ "loss": 0.3994,
2085
+ "step": 1730
2086
+ },
2087
+ {
2088
+ "epoch": 1.86,
2089
+ "learning_rate": 1.588138615592278e-05,
2090
+ "loss": 0.2006,
2091
+ "step": 1735
2092
+ },
2093
+ {
2094
+ "epoch": 1.86,
2095
+ "learning_rate": 1.5751035795691727e-05,
2096
+ "loss": 0.5552,
2097
+ "step": 1740
2098
+ },
2099
+ {
2100
+ "epoch": 1.87,
2101
+ "learning_rate": 1.5620976102276714e-05,
2102
+ "loss": 0.3602,
2103
+ "step": 1745
2104
+ },
2105
+ {
2106
+ "epoch": 1.87,
2107
+ "learning_rate": 1.5491211163058357e-05,
2108
+ "loss": 0.2798,
2109
+ "step": 1750
2110
+ },
2111
+ {
2112
+ "epoch": 1.88,
2113
+ "learning_rate": 1.5361745056154048e-05,
2114
+ "loss": 0.2709,
2115
+ "step": 1755
2116
+ },
2117
+ {
2118
+ "epoch": 1.88,
2119
+ "learning_rate": 1.523258185028977e-05,
2120
+ "loss": 0.3803,
2121
+ "step": 1760
2122
+ },
2123
+ {
2124
+ "epoch": 1.89,
2125
+ "learning_rate": 1.5103725604672275e-05,
2126
+ "loss": 0.2861,
2127
+ "step": 1765
2128
+ },
2129
+ {
2130
+ "epoch": 1.9,
2131
+ "learning_rate": 1.4975180368861458e-05,
2132
+ "loss": 0.3521,
2133
+ "step": 1770
2134
+ },
2135
+ {
2136
+ "epoch": 1.9,
2137
+ "learning_rate": 1.4846950182643143e-05,
2138
+ "loss": 0.3457,
2139
+ "step": 1775
2140
+ },
2141
+ {
2142
+ "epoch": 1.91,
2143
+ "learning_rate": 1.4719039075902091e-05,
2144
+ "loss": 0.333,
2145
+ "step": 1780
2146
+ },
2147
+ {
2148
+ "epoch": 1.91,
2149
+ "learning_rate": 1.4591451068495382e-05,
2150
+ "loss": 0.2831,
2151
+ "step": 1785
2152
+ },
2153
+ {
2154
+ "epoch": 1.92,
2155
+ "learning_rate": 1.4464190170126034e-05,
2156
+ "loss": 0.3263,
2157
+ "step": 1790
2158
+ },
2159
+ {
2160
+ "epoch": 1.92,
2161
+ "learning_rate": 1.433726038021707e-05,
2162
+ "loss": 0.301,
2163
+ "step": 1795
2164
+ },
2165
+ {
2166
+ "epoch": 1.93,
2167
+ "learning_rate": 1.4210665687785734e-05,
2168
+ "loss": 0.2941,
2169
+ "step": 1800
2170
+ },
2171
+ {
2172
+ "epoch": 1.93,
2173
+ "learning_rate": 1.4084410071318201e-05,
2174
+ "loss": 0.2209,
2175
+ "step": 1805
2176
+ },
2177
+ {
2178
+ "epoch": 1.94,
2179
+ "learning_rate": 1.3958497498644529e-05,
2180
+ "loss": 0.4193,
2181
+ "step": 1810
2182
+ },
2183
+ {
2184
+ "epoch": 1.94,
2185
+ "learning_rate": 1.3832931926813907e-05,
2186
+ "loss": 0.302,
2187
+ "step": 1815
2188
+ },
2189
+ {
2190
+ "epoch": 1.95,
2191
+ "learning_rate": 1.3707717301970416e-05,
2192
+ "loss": 0.3154,
2193
+ "step": 1820
2194
+ },
2195
+ {
2196
+ "epoch": 1.95,
2197
+ "learning_rate": 1.3582857559228867e-05,
2198
+ "loss": 0.548,
2199
+ "step": 1825
2200
+ },
2201
+ {
2202
+ "epoch": 1.96,
2203
+ "learning_rate": 1.345835662255126e-05,
2204
+ "loss": 0.2957,
2205
+ "step": 1830
2206
+ },
2207
+ {
2208
+ "epoch": 1.96,
2209
+ "learning_rate": 1.3334218404623373e-05,
2210
+ "loss": 0.2932,
2211
+ "step": 1835
2212
+ },
2213
+ {
2214
+ "epoch": 1.97,
2215
+ "learning_rate": 1.3210446806731857e-05,
2216
+ "loss": 0.3821,
2217
+ "step": 1840
2218
+ },
2219
+ {
2220
+ "epoch": 1.98,
2221
+ "learning_rate": 1.308704571864161e-05,
2222
+ "loss": 0.3919,
2223
+ "step": 1845
2224
+ },
2225
+ {
2226
+ "epoch": 1.98,
2227
+ "learning_rate": 1.2964019018473545e-05,
2228
+ "loss": 0.2465,
2229
+ "step": 1850
2230
+ },
2231
+ {
2232
+ "epoch": 1.99,
2233
+ "learning_rate": 1.2841370572582661e-05,
2234
+ "loss": 0.4155,
2235
+ "step": 1855
2236
+ },
2237
+ {
2238
+ "epoch": 1.99,
2239
+ "learning_rate": 1.2719104235436613e-05,
2240
+ "loss": 0.379,
2241
+ "step": 1860
2242
+ },
2243
+ {
2244
+ "epoch": 2.0,
2245
+ "learning_rate": 1.2597223849494538e-05,
2246
+ "loss": 0.304,
2247
+ "step": 1865
2248
+ },
2249
+ {
2250
+ "epoch": 2.0,
2251
+ "learning_rate": 1.2475733245086263e-05,
2252
+ "loss": 0.3512,
2253
+ "step": 1870
2254
+ },
2255
+ {
2256
+ "epoch": 2.01,
2257
+ "learning_rate": 1.2354636240292031e-05,
2258
+ "loss": 0.1898,
2259
+ "step": 1875
2260
+ },
2261
+ {
2262
+ "epoch": 2.01,
2263
+ "learning_rate": 1.2233936640822385e-05,
2264
+ "loss": 0.1608,
2265
+ "step": 1880
2266
+ },
2267
+ {
2268
+ "epoch": 2.02,
2269
+ "learning_rate": 1.211363823989867e-05,
2270
+ "loss": 0.1453,
2271
+ "step": 1885
2272
+ },
2273
+ {
2274
+ "epoch": 2.02,
2275
+ "learning_rate": 1.1993744818133742e-05,
2276
+ "loss": 0.1639,
2277
+ "step": 1890
2278
+ },
2279
+ {
2280
+ "epoch": 2.03,
2281
+ "learning_rate": 1.187426014341323e-05,
2282
+ "loss": 0.1394,
2283
+ "step": 1895
2284
+ },
2285
+ {
2286
+ "epoch": 2.03,
2287
+ "learning_rate": 1.1755187970777065e-05,
2288
+ "loss": 0.1596,
2289
+ "step": 1900
2290
+ },
2291
+ {
2292
+ "epoch": 2.04,
2293
+ "learning_rate": 1.1636532042301512e-05,
2294
+ "loss": 0.1185,
2295
+ "step": 1905
2296
+ },
2297
+ {
2298
+ "epoch": 2.04,
2299
+ "learning_rate": 1.1518296086981514e-05,
2300
+ "loss": 0.1359,
2301
+ "step": 1910
2302
+ },
2303
+ {
2304
+ "epoch": 2.05,
2305
+ "learning_rate": 1.1400483820613563e-05,
2306
+ "loss": 0.1435,
2307
+ "step": 1915
2308
+ },
2309
+ {
2310
+ "epoch": 2.06,
2311
+ "learning_rate": 1.1283098945678902e-05,
2312
+ "loss": 0.1491,
2313
+ "step": 1920
2314
+ },
2315
+ {
2316
+ "epoch": 2.06,
2317
+ "learning_rate": 1.1166145151227117e-05,
2318
+ "loss": 0.1697,
2319
+ "step": 1925
2320
+ },
2321
+ {
2322
+ "epoch": 2.07,
2323
+ "learning_rate": 1.1049626112760314e-05,
2324
+ "loss": 0.1224,
2325
+ "step": 1930
2326
+ },
2327
+ {
2328
+ "epoch": 2.07,
2329
+ "learning_rate": 1.0933545492117473e-05,
2330
+ "loss": 0.1467,
2331
+ "step": 1935
2332
+ },
2333
+ {
2334
+ "epoch": 2.08,
2335
+ "learning_rate": 1.0817906937359482e-05,
2336
+ "loss": 0.1813,
2337
+ "step": 1940
2338
+ },
2339
+ {
2340
+ "epoch": 2.08,
2341
+ "learning_rate": 1.070271408265441e-05,
2342
+ "loss": 0.1128,
2343
+ "step": 1945
2344
+ },
2345
+ {
2346
+ "epoch": 2.09,
2347
+ "learning_rate": 1.058797054816335e-05,
2348
+ "loss": 0.1896,
2349
+ "step": 1950
2350
+ },
2351
+ {
2352
+ "epoch": 2.09,
2353
+ "learning_rate": 1.0473679939926626e-05,
2354
+ "loss": 0.1205,
2355
+ "step": 1955
2356
+ },
2357
+ {
2358
+ "epoch": 2.1,
2359
+ "learning_rate": 1.0359845849750466e-05,
2360
+ "loss": 0.1581,
2361
+ "step": 1960
2362
+ },
2363
+ {
2364
+ "epoch": 2.1,
2365
+ "learning_rate": 1.0246471855094106e-05,
2366
+ "loss": 0.1542,
2367
+ "step": 1965
2368
+ },
2369
+ {
2370
+ "epoch": 2.11,
2371
+ "learning_rate": 1.0133561518957402e-05,
2372
+ "loss": 0.1542,
2373
+ "step": 1970
2374
+ },
2375
+ {
2376
+ "epoch": 2.11,
2377
+ "learning_rate": 1.0021118389768833e-05,
2378
+ "loss": 0.0885,
2379
+ "step": 1975
2380
+ },
2381
+ {
2382
+ "epoch": 2.12,
2383
+ "learning_rate": 9.909146001273947e-06,
2384
+ "loss": 0.109,
2385
+ "step": 1980
2386
+ },
2387
+ {
2388
+ "epoch": 2.13,
2389
+ "learning_rate": 9.797647872424413e-06,
2390
+ "loss": 0.1327,
2391
+ "step": 1985
2392
+ },
2393
+ {
2394
+ "epoch": 2.13,
2395
+ "learning_rate": 9.686627507267287e-06,
2396
+ "loss": 0.1584,
2397
+ "step": 1990
2398
+ },
2399
+ {
2400
+ "epoch": 2.14,
2401
+ "learning_rate": 9.576088394835023e-06,
2402
+ "loss": 0.2896,
2403
+ "step": 1995
2404
+ },
2405
+ {
2406
+ "epoch": 2.14,
2407
+ "learning_rate": 9.466034009035724e-06,
2408
+ "loss": 0.2332,
2409
+ "step": 2000
2410
+ },
2411
+ {
2412
+ "epoch": 2.15,
2413
+ "learning_rate": 9.356467808544033e-06,
2414
+ "loss": 0.1039,
2415
+ "step": 2005
2416
+ },
2417
+ {
2418
+ "epoch": 2.15,
2419
+ "learning_rate": 9.247393236692412e-06,
2420
+ "loss": 0.1014,
2421
+ "step": 2010
2422
+ },
2423
+ {
2424
+ "epoch": 2.16,
2425
+ "learning_rate": 9.13881372136293e-06,
2426
+ "loss": 0.0737,
2427
+ "step": 2015
2428
+ },
2429
+ {
2430
+ "epoch": 2.16,
2431
+ "learning_rate": 9.030732674879514e-06,
2432
+ "loss": 0.1649,
2433
+ "step": 2020
2434
+ },
2435
+ {
2436
+ "epoch": 2.17,
2437
+ "learning_rate": 8.923153493900757e-06,
2438
+ "loss": 0.1502,
2439
+ "step": 2025
2440
+ },
2441
+ {
2442
+ "epoch": 2.17,
2443
+ "learning_rate": 8.816079559313147e-06,
2444
+ "loss": 0.2198,
2445
+ "step": 2030
2446
+ },
2447
+ {
2448
+ "epoch": 2.18,
2449
+ "learning_rate": 8.709514236124783e-06,
2450
+ "loss": 0.2312,
2451
+ "step": 2035
2452
+ },
2453
+ {
2454
+ "epoch": 2.18,
2455
+ "learning_rate": 8.603460873359687e-06,
2456
+ "loss": 0.1627,
2457
+ "step": 2040
2458
+ },
2459
+ {
2460
+ "epoch": 2.19,
2461
+ "learning_rate": 8.49792280395251e-06,
2462
+ "loss": 0.0986,
2463
+ "step": 2045
2464
+ },
2465
+ {
2466
+ "epoch": 2.19,
2467
+ "learning_rate": 8.392903344643807e-06,
2468
+ "loss": 0.1889,
2469
+ "step": 2050
2470
+ },
2471
+ {
2472
+ "epoch": 2.2,
2473
+ "learning_rate": 8.288405795875773e-06,
2474
+ "loss": 0.1543,
2475
+ "step": 2055
2476
+ },
2477
+ {
2478
+ "epoch": 2.21,
2479
+ "learning_rate": 8.184433441688564e-06,
2480
+ "loss": 0.0997,
2481
+ "step": 2060
2482
+ },
2483
+ {
2484
+ "epoch": 2.21,
2485
+ "learning_rate": 8.08098954961706e-06,
2486
+ "loss": 0.1241,
2487
+ "step": 2065
2488
+ },
2489
+ {
2490
+ "epoch": 2.22,
2491
+ "learning_rate": 7.978077370588196e-06,
2492
+ "loss": 0.1259,
2493
+ "step": 2070
2494
+ },
2495
+ {
2496
+ "epoch": 2.22,
2497
+ "learning_rate": 7.875700138818756e-06,
2498
+ "loss": 0.1803,
2499
+ "step": 2075
2500
+ },
2501
+ {
2502
+ "epoch": 2.23,
2503
+ "learning_rate": 7.773861071713779e-06,
2504
+ "loss": 0.1437,
2505
+ "step": 2080
2506
+ },
2507
+ {
2508
+ "epoch": 2.23,
2509
+ "learning_rate": 7.672563369765429e-06,
2510
+ "loss": 0.131,
2511
+ "step": 2085
2512
+ },
2513
+ {
2514
+ "epoch": 2.24,
2515
+ "learning_rate": 7.571810216452388e-06,
2516
+ "loss": 0.193,
2517
+ "step": 2090
2518
+ },
2519
+ {
2520
+ "epoch": 2.24,
2521
+ "learning_rate": 7.4716047781398485e-06,
2522
+ "loss": 0.1658,
2523
+ "step": 2095
2524
+ },
2525
+ {
2526
+ "epoch": 2.25,
2527
+ "learning_rate": 7.3719502039799856e-06,
2528
+ "loss": 0.1377,
2529
+ "step": 2100
2530
+ },
2531
+ {
2532
+ "epoch": 2.25,
2533
+ "learning_rate": 7.2728496258129915e-06,
2534
+ "loss": 0.1433,
2535
+ "step": 2105
2536
+ },
2537
+ {
2538
+ "epoch": 2.26,
2539
+ "learning_rate": 7.174306158068625e-06,
2540
+ "loss": 0.1309,
2541
+ "step": 2110
2542
+ },
2543
+ {
2544
+ "epoch": 2.26,
2545
+ "learning_rate": 7.0763228976683885e-06,
2546
+ "loss": 0.149,
2547
+ "step": 2115
2548
+ },
2549
+ {
2550
+ "epoch": 2.27,
2551
+ "learning_rate": 6.9789029239281574e-06,
2552
+ "loss": 0.1573,
2553
+ "step": 2120
2554
+ },
2555
+ {
2556
+ "epoch": 2.28,
2557
+ "learning_rate": 6.8820492984614324e-06,
2558
+ "loss": 0.1268,
2559
+ "step": 2125
2560
+ },
2561
+ {
2562
+ "epoch": 2.28,
2563
+ "learning_rate": 6.785765065083083e-06,
2564
+ "loss": 0.0947,
2565
+ "step": 2130
2566
+ },
2567
+ {
2568
+ "epoch": 2.29,
2569
+ "learning_rate": 6.690053249713743e-06,
2570
+ "loss": 0.1492,
2571
+ "step": 2135
2572
+ },
2573
+ {
2574
+ "epoch": 2.29,
2575
+ "learning_rate": 6.594916860284692e-06,
2576
+ "loss": 0.1955,
2577
+ "step": 2140
2578
+ },
2579
+ {
2580
+ "epoch": 2.3,
2581
+ "learning_rate": 6.50035888664329e-06,
2582
+ "loss": 0.1137,
2583
+ "step": 2145
2584
+ },
2585
+ {
2586
+ "epoch": 2.3,
2587
+ "learning_rate": 6.406382300459079e-06,
2588
+ "loss": 0.1055,
2589
+ "step": 2150
2590
+ },
2591
+ {
2592
+ "epoch": 2.31,
2593
+ "learning_rate": 6.312990055130355e-06,
2594
+ "loss": 0.1119,
2595
+ "step": 2155
2596
+ },
2597
+ {
2598
+ "epoch": 2.31,
2599
+ "learning_rate": 6.22018508569136e-06,
2600
+ "loss": 0.1138,
2601
+ "step": 2160
2602
+ },
2603
+ {
2604
+ "epoch": 2.32,
2605
+ "learning_rate": 6.1279703087200186e-06,
2606
+ "loss": 0.1401,
2607
+ "step": 2165
2608
+ },
2609
+ {
2610
+ "epoch": 2.32,
2611
+ "learning_rate": 6.036348622246327e-06,
2612
+ "loss": 0.1442,
2613
+ "step": 2170
2614
+ },
2615
+ {
2616
+ "epoch": 2.33,
2617
+ "learning_rate": 5.945322905661244e-06,
2618
+ "loss": 0.115,
2619
+ "step": 2175
2620
+ },
2621
+ {
2622
+ "epoch": 2.33,
2623
+ "learning_rate": 5.854896019626208e-06,
2624
+ "loss": 0.1394,
2625
+ "step": 2180
2626
+ },
2627
+ {
2628
+ "epoch": 2.34,
2629
+ "learning_rate": 5.765070805983219e-06,
2630
+ "loss": 0.1419,
2631
+ "step": 2185
2632
+ },
2633
+ {
2634
+ "epoch": 2.34,
2635
+ "learning_rate": 5.675850087665563e-06,
2636
+ "loss": 0.1352,
2637
+ "step": 2190
2638
+ },
2639
+ {
2640
+ "epoch": 2.35,
2641
+ "learning_rate": 5.58723666860908e-06,
2642
+ "loss": 0.1157,
2643
+ "step": 2195
2644
+ },
2645
+ {
2646
+ "epoch": 2.36,
2647
+ "learning_rate": 5.4992333336640115e-06,
2648
+ "loss": 0.1597,
2649
+ "step": 2200
2650
+ },
2651
+ {
2652
+ "epoch": 2.36,
2653
+ "learning_rate": 5.411842848507542e-06,
2654
+ "loss": 0.1668,
2655
+ "step": 2205
2656
+ },
2657
+ {
2658
+ "epoch": 2.37,
2659
+ "learning_rate": 5.325067959556834e-06,
2660
+ "loss": 0.106,
2661
+ "step": 2210
2662
+ },
2663
+ {
2664
+ "epoch": 2.37,
2665
+ "learning_rate": 5.238911393882751e-06,
2666
+ "loss": 0.1626,
2667
+ "step": 2215
2668
+ },
2669
+ {
2670
+ "epoch": 2.38,
2671
+ "learning_rate": 5.1533758591241075e-06,
2672
+ "loss": 0.1001,
2673
+ "step": 2220
2674
+ },
2675
+ {
2676
+ "epoch": 2.38,
2677
+ "learning_rate": 5.068464043402632e-06,
2678
+ "loss": 0.1199,
2679
+ "step": 2225
2680
+ },
2681
+ {
2682
+ "epoch": 2.39,
2683
+ "learning_rate": 4.984178615238436e-06,
2684
+ "loss": 0.1118,
2685
+ "step": 2230
2686
+ },
2687
+ {
2688
+ "epoch": 2.39,
2689
+ "learning_rate": 4.900522223466208e-06,
2690
+ "loss": 0.2024,
2691
+ "step": 2235
2692
+ },
2693
+ {
2694
+ "epoch": 2.4,
2695
+ "learning_rate": 4.8174974971519075e-06,
2696
+ "loss": 0.0992,
2697
+ "step": 2240
2698
+ },
2699
+ {
2700
+ "epoch": 2.4,
2701
+ "learning_rate": 4.735107045510179e-06,
2702
+ "loss": 0.0686,
2703
+ "step": 2245
2704
+ },
2705
+ {
2706
+ "epoch": 2.41,
2707
+ "learning_rate": 4.653353457822349e-06,
2708
+ "loss": 0.2271,
2709
+ "step": 2250
2710
+ },
2711
+ {
2712
+ "epoch": 2.41,
2713
+ "learning_rate": 4.572239303355033e-06,
2714
+ "loss": 0.1831,
2715
+ "step": 2255
2716
+ },
2717
+ {
2718
+ "epoch": 2.42,
2719
+ "learning_rate": 4.491767131279414e-06,
2720
+ "loss": 0.1541,
2721
+ "step": 2260
2722
+ },
2723
+ {
2724
+ "epoch": 2.43,
2725
+ "learning_rate": 4.411939470591125e-06,
2726
+ "loss": 0.2611,
2727
+ "step": 2265
2728
+ },
2729
+ {
2730
+ "epoch": 2.43,
2731
+ "learning_rate": 4.332758830030767e-06,
2732
+ "loss": 0.1216,
2733
+ "step": 2270
2734
+ },
2735
+ {
2736
+ "epoch": 2.44,
2737
+ "learning_rate": 4.254227698005048e-06,
2738
+ "loss": 0.112,
2739
+ "step": 2275
2740
+ },
2741
+ {
2742
+ "epoch": 2.44,
2743
+ "learning_rate": 4.176348542508621e-06,
2744
+ "loss": 0.1712,
2745
+ "step": 2280
2746
+ },
2747
+ {
2748
+ "epoch": 2.45,
2749
+ "learning_rate": 4.099123811046471e-06,
2750
+ "loss": 0.1919,
2751
+ "step": 2285
2752
+ },
2753
+ {
2754
+ "epoch": 2.45,
2755
+ "learning_rate": 4.0225559305570676e-06,
2756
+ "loss": 0.1018,
2757
+ "step": 2290
2758
+ },
2759
+ {
2760
+ "epoch": 2.46,
2761
+ "learning_rate": 3.946647307336013e-06,
2762
+ "loss": 0.1054,
2763
+ "step": 2295
2764
+ },
2765
+ {
2766
+ "epoch": 2.46,
2767
+ "learning_rate": 3.871400326960481e-06,
2768
+ "loss": 0.1212,
2769
+ "step": 2300
2770
+ },
2771
+ {
2772
+ "epoch": 2.47,
2773
+ "learning_rate": 3.7968173542142187e-06,
2774
+ "loss": 0.1063,
2775
+ "step": 2305
2776
+ },
2777
+ {
2778
+ "epoch": 2.47,
2779
+ "learning_rate": 3.722900733013221e-06,
2780
+ "loss": 0.1183,
2781
+ "step": 2310
2782
+ },
2783
+ {
2784
+ "epoch": 2.48,
2785
+ "learning_rate": 3.6496527863320916e-06,
2786
+ "loss": 0.3089,
2787
+ "step": 2315
2788
+ },
2789
+ {
2790
+ "epoch": 2.48,
2791
+ "learning_rate": 3.5770758161310288e-06,
2792
+ "loss": 0.1188,
2793
+ "step": 2320
2794
+ },
2795
+ {
2796
+ "epoch": 2.49,
2797
+ "learning_rate": 3.505172103283483e-06,
2798
+ "loss": 0.1374,
2799
+ "step": 2325
2800
+ },
2801
+ {
2802
+ "epoch": 2.49,
2803
+ "learning_rate": 3.4339439075044555e-06,
2804
+ "loss": 0.2563,
2805
+ "step": 2330
2806
+ },
2807
+ {
2808
+ "epoch": 2.5,
2809
+ "learning_rate": 3.3633934672795242e-06,
2810
+ "loss": 0.0739,
2811
+ "step": 2335
2812
+ },
2813
+ {
2814
+ "epoch": 2.51,
2815
+ "learning_rate": 3.293522999794443e-06,
2816
+ "loss": 0.1082,
2817
+ "step": 2340
2818
+ },
2819
+ {
2820
+ "epoch": 2.51,
2821
+ "learning_rate": 3.2243347008655333e-06,
2822
+ "loss": 0.1598,
2823
+ "step": 2345
2824
+ },
2825
+ {
2826
+ "epoch": 2.52,
2827
+ "learning_rate": 3.1558307448705886e-06,
2828
+ "loss": 0.1337,
2829
+ "step": 2350
2830
+ },
2831
+ {
2832
+ "epoch": 2.52,
2833
+ "learning_rate": 3.0880132846806103e-06,
2834
+ "loss": 0.1227,
2835
+ "step": 2355
2836
+ },
2837
+ {
2838
+ "epoch": 2.53,
2839
+ "learning_rate": 3.020884451592126e-06,
2840
+ "loss": 0.1446,
2841
+ "step": 2360
2842
+ },
2843
+ {
2844
+ "epoch": 2.53,
2845
+ "learning_rate": 2.9544463552601875e-06,
2846
+ "loss": 0.1262,
2847
+ "step": 2365
2848
+ },
2849
+ {
2850
+ "epoch": 2.54,
2851
+ "learning_rate": 2.8887010836321087e-06,
2852
+ "loss": 0.131,
2853
+ "step": 2370
2854
+ },
2855
+ {
2856
+ "epoch": 2.54,
2857
+ "learning_rate": 2.8236507028818306e-06,
2858
+ "loss": 0.3064,
2859
+ "step": 2375
2860
+ },
2861
+ {
2862
+ "epoch": 2.55,
2863
+ "learning_rate": 2.759297257344981e-06,
2864
+ "loss": 0.1329,
2865
+ "step": 2380
2866
+ },
2867
+ {
2868
+ "epoch": 2.55,
2869
+ "learning_rate": 2.695642769454629e-06,
2870
+ "loss": 0.1269,
2871
+ "step": 2385
2872
+ },
2873
+ {
2874
+ "epoch": 2.56,
2875
+ "learning_rate": 2.6326892396777465e-06,
2876
+ "loss": 0.1515,
2877
+ "step": 2390
2878
+ },
2879
+ {
2880
+ "epoch": 2.56,
2881
+ "learning_rate": 2.5704386464522946e-06,
2882
+ "loss": 0.1497,
2883
+ "step": 2395
2884
+ },
2885
+ {
2886
+ "epoch": 2.57,
2887
+ "learning_rate": 2.508892946125119e-06,
2888
+ "loss": 0.1247,
2889
+ "step": 2400
2890
+ },
2891
+ {
2892
+ "epoch": 2.57,
2893
+ "learning_rate": 2.4480540728903876e-06,
2894
+ "loss": 0.1079,
2895
+ "step": 2405
2896
+ },
2897
+ {
2898
+ "epoch": 2.58,
2899
+ "learning_rate": 2.3879239387288615e-06,
2900
+ "loss": 0.0815,
2901
+ "step": 2410
2902
+ },
2903
+ {
2904
+ "epoch": 2.59,
2905
+ "learning_rate": 2.3285044333477834e-06,
2906
+ "loss": 0.0905,
2907
+ "step": 2415
2908
+ },
2909
+ {
2910
+ "epoch": 2.59,
2911
+ "learning_rate": 2.269797424121492e-06,
2912
+ "loss": 0.1124,
2913
+ "step": 2420
2914
+ },
2915
+ {
2916
+ "epoch": 2.6,
2917
+ "learning_rate": 2.2118047560327425e-06,
2918
+ "loss": 0.1781,
2919
+ "step": 2425
2920
+ },
2921
+ {
2922
+ "epoch": 2.6,
2923
+ "learning_rate": 2.154528251614721e-06,
2924
+ "loss": 0.2224,
2925
+ "step": 2430
2926
+ },
2927
+ {
2928
+ "epoch": 2.61,
2929
+ "learning_rate": 2.0979697108937685e-06,
2930
+ "loss": 0.1721,
2931
+ "step": 2435
2932
+ },
2933
+ {
2934
+ "epoch": 2.61,
2935
+ "learning_rate": 2.0421309113328042e-06,
2936
+ "loss": 0.1502,
2937
+ "step": 2440
2938
+ },
2939
+ {
2940
+ "epoch": 2.62,
2941
+ "learning_rate": 1.9870136077754787e-06,
2942
+ "loss": 0.1646,
2943
+ "step": 2445
2944
+ },
2945
+ {
2946
+ "epoch": 2.62,
2947
+ "learning_rate": 1.9326195323910082e-06,
2948
+ "loss": 0.1088,
2949
+ "step": 2450
2950
+ },
2951
+ {
2952
+ "epoch": 2.63,
2953
+ "learning_rate": 1.8789503946197579e-06,
2954
+ "loss": 0.1143,
2955
+ "step": 2455
2956
+ },
2957
+ {
2958
+ "epoch": 2.63,
2959
+ "learning_rate": 1.8260078811195041e-06,
2960
+ "loss": 0.1692,
2961
+ "step": 2460
2962
+ },
2963
+ {
2964
+ "epoch": 2.64,
2965
+ "learning_rate": 1.7737936557124301e-06,
2966
+ "loss": 0.1727,
2967
+ "step": 2465
2968
+ },
2969
+ {
2970
+ "epoch": 2.64,
2971
+ "learning_rate": 1.7223093593328494e-06,
2972
+ "loss": 0.0885,
2973
+ "step": 2470
2974
+ },
2975
+ {
2976
+ "epoch": 2.65,
2977
+ "learning_rate": 1.6715566099756024e-06,
2978
+ "loss": 0.0786,
2979
+ "step": 2475
2980
+ },
2981
+ {
2982
+ "epoch": 2.66,
2983
+ "learning_rate": 1.6215370026452598e-06,
2984
+ "loss": 0.1128,
2985
+ "step": 2480
2986
+ },
2987
+ {
2988
+ "epoch": 2.66,
2989
+ "learning_rate": 1.5722521093059496e-06,
2990
+ "loss": 0.1089,
2991
+ "step": 2485
2992
+ },
2993
+ {
2994
+ "epoch": 2.67,
2995
+ "learning_rate": 1.5237034788319837e-06,
2996
+ "loss": 0.1772,
2997
+ "step": 2490
2998
+ },
2999
+ {
3000
+ "epoch": 2.67,
3001
+ "learning_rate": 1.4758926369591614e-06,
3002
+ "loss": 0.1795,
3003
+ "step": 2495
3004
+ },
3005
+ {
3006
+ "epoch": 2.68,
3007
+ "learning_rate": 1.4288210862368395e-06,
3008
+ "loss": 0.1264,
3009
+ "step": 2500
3010
+ },
3011
+ {
3012
+ "epoch": 2.68,
3013
+ "learning_rate": 1.3824903059806937e-06,
3014
+ "loss": 0.1129,
3015
+ "step": 2505
3016
+ },
3017
+ {
3018
+ "epoch": 2.69,
3019
+ "learning_rate": 1.3369017522262438e-06,
3020
+ "loss": 0.0854,
3021
+ "step": 2510
3022
+ },
3023
+ {
3024
+ "epoch": 2.69,
3025
+ "learning_rate": 1.2920568576830882e-06,
3026
+ "loss": 0.0878,
3027
+ "step": 2515
3028
+ },
3029
+ {
3030
+ "epoch": 2.7,
3031
+ "learning_rate": 1.2479570316898726e-06,
3032
+ "loss": 0.1346,
3033
+ "step": 2520
3034
+ },
3035
+ {
3036
+ "epoch": 2.7,
3037
+ "learning_rate": 1.2046036601700146e-06,
3038
+ "loss": 0.1298,
3039
+ "step": 2525
3040
+ },
3041
+ {
3042
+ "epoch": 2.71,
3043
+ "learning_rate": 1.1619981055881162e-06,
3044
+ "loss": 0.1598,
3045
+ "step": 2530
3046
+ },
3047
+ {
3048
+ "epoch": 2.71,
3049
+ "learning_rate": 1.1201417069071934e-06,
3050
+ "loss": 0.1295,
3051
+ "step": 2535
3052
+ },
3053
+ {
3054
+ "epoch": 2.72,
3055
+ "learning_rate": 1.0790357795465527e-06,
3056
+ "loss": 0.127,
3057
+ "step": 2540
3058
+ },
3059
+ {
3060
+ "epoch": 2.72,
3061
+ "learning_rate": 1.038681615340481e-06,
3062
+ "loss": 0.1714,
3063
+ "step": 2545
3064
+ },
3065
+ {
3066
+ "epoch": 2.73,
3067
+ "learning_rate": 9.99080482497622e-07,
3068
+ "loss": 0.1494,
3069
+ "step": 2550
3070
+ },
3071
+ {
3072
+ "epoch": 2.74,
3073
+ "learning_rate": 9.602336255611522e-07,
3074
+ "loss": 0.0671,
3075
+ "step": 2555
3076
+ },
3077
+ {
3078
+ "epoch": 2.74,
3079
+ "learning_rate": 9.221422653696299e-07,
3080
+ "loss": 0.1641,
3081
+ "step": 2560
3082
+ },
3083
+ {
3084
+ "epoch": 2.75,
3085
+ "learning_rate": 8.848075990186639e-07,
3086
+ "loss": 0.1617,
3087
+ "step": 2565
3088
+ },
3089
+ {
3090
+ "epoch": 2.75,
3091
+ "learning_rate": 8.482307998232686e-07,
3092
+ "loss": 0.1436,
3093
+ "step": 2570
3094
+ },
3095
+ {
3096
+ "epoch": 2.76,
3097
+ "learning_rate": 8.12413017281008e-07,
3098
+ "loss": 0.1328,
3099
+ "step": 2575
3100
+ },
3101
+ {
3102
+ "epoch": 2.76,
3103
+ "learning_rate": 7.773553770358488e-07,
3104
+ "loss": 0.1612,
3105
+ "step": 2580
3106
+ },
3107
+ {
3108
+ "epoch": 2.77,
3109
+ "learning_rate": 7.430589808428062e-07,
3110
+ "loss": 0.141,
3111
+ "step": 2585
3112
+ },
3113
+ {
3114
+ "epoch": 2.77,
3115
+ "learning_rate": 7.095249065333016e-07,
3116
+ "loss": 0.1324,
3117
+ "step": 2590
3118
+ },
3119
+ {
3120
+ "epoch": 2.78,
3121
+ "learning_rate": 6.767542079813089e-07,
3122
+ "loss": 0.2075,
3123
+ "step": 2595
3124
+ },
3125
+ {
3126
+ "epoch": 2.78,
3127
+ "learning_rate": 6.447479150702207e-07,
3128
+ "loss": 0.1804,
3129
+ "step": 2600
3130
+ },
3131
+ {
3132
+ "epoch": 2.79,
3133
+ "learning_rate": 6.135070336604737e-07,
3134
+ "loss": 0.184,
3135
+ "step": 2605
3136
+ },
3137
+ {
3138
+ "epoch": 2.79,
3139
+ "learning_rate": 5.830325455579627e-07,
3140
+ "loss": 0.2522,
3141
+ "step": 2610
3142
+ },
3143
+ {
3144
+ "epoch": 2.8,
3145
+ "learning_rate": 5.533254084831657e-07,
3146
+ "loss": 0.1122,
3147
+ "step": 2615
3148
+ },
3149
+ {
3150
+ "epoch": 2.81,
3151
+ "learning_rate": 5.24386556041051e-07,
3152
+ "loss": 0.1075,
3153
+ "step": 2620
3154
+ },
3155
+ {
3156
+ "epoch": 2.81,
3157
+ "learning_rate": 4.962168976917397e-07,
3158
+ "loss": 0.1535,
3159
+ "step": 2625
3160
+ },
3161
+ {
3162
+ "epoch": 2.82,
3163
+ "learning_rate": 4.688173187219258e-07,
3164
+ "loss": 0.1201,
3165
+ "step": 2630
3166
+ },
3167
+ {
3168
+ "epoch": 2.82,
3169
+ "learning_rate": 4.4218868021703996e-07,
3170
+ "loss": 0.0932,
3171
+ "step": 2635
3172
+ },
3173
+ {
3174
+ "epoch": 2.83,
3175
+ "learning_rate": 4.163318190342075e-07,
3176
+ "loss": 0.1969,
3177
+ "step": 2640
3178
+ },
3179
+ {
3180
+ "epoch": 2.83,
3181
+ "learning_rate": 3.912475477759386e-07,
3182
+ "loss": 0.1997,
3183
+ "step": 2645
3184
+ },
3185
+ {
3186
+ "epoch": 2.84,
3187
+ "learning_rate": 3.6693665476458526e-07,
3188
+ "loss": 0.1271,
3189
+ "step": 2650
3190
+ },
3191
+ {
3192
+ "epoch": 2.84,
3193
+ "learning_rate": 3.433999040175828e-07,
3194
+ "loss": 0.166,
3195
+ "step": 2655
3196
+ },
3197
+ {
3198
+ "epoch": 2.85,
3199
+ "learning_rate": 3.206380352234195e-07,
3200
+ "loss": 0.1474,
3201
+ "step": 2660
3202
+ },
3203
+ {
3204
+ "epoch": 2.85,
3205
+ "learning_rate": 2.986517637184133e-07,
3206
+ "loss": 0.1127,
3207
+ "step": 2665
3208
+ },
3209
+ {
3210
+ "epoch": 2.86,
3211
+ "learning_rate": 2.774417804642021e-07,
3212
+ "loss": 0.1357,
3213
+ "step": 2670
3214
+ },
3215
+ {
3216
+ "epoch": 2.86,
3217
+ "learning_rate": 2.570087520260611e-07,
3218
+ "loss": 0.0642,
3219
+ "step": 2675
3220
+ },
3221
+ {
3222
+ "epoch": 2.87,
3223
+ "learning_rate": 2.3735332055192515e-07,
3224
+ "loss": 0.111,
3225
+ "step": 2680
3226
+ },
3227
+ {
3228
+ "epoch": 2.87,
3229
+ "learning_rate": 2.184761037522326e-07,
3230
+ "loss": 0.1453,
3231
+ "step": 2685
3232
+ },
3233
+ {
3234
+ "epoch": 2.88,
3235
+ "learning_rate": 2.0037769488049363e-07,
3236
+ "loss": 0.2098,
3237
+ "step": 2690
3238
+ },
3239
+ {
3240
+ "epoch": 2.89,
3241
+ "learning_rate": 1.8305866271465521e-07,
3242
+ "loss": 0.1603,
3243
+ "step": 2695
3244
+ },
3245
+ {
3246
+ "epoch": 2.89,
3247
+ "learning_rate": 1.665195515392265e-07,
3248
+ "loss": 0.1162,
3249
+ "step": 2700
3250
+ },
3251
+ {
3252
+ "epoch": 2.9,
3253
+ "learning_rate": 1.50760881128173e-07,
3254
+ "loss": 0.1069,
3255
+ "step": 2705
3256
+ },
3257
+ {
3258
+ "epoch": 2.9,
3259
+ "learning_rate": 1.3578314672857972e-07,
3260
+ "loss": 0.1596,
3261
+ "step": 2710
3262
+ },
3263
+ {
3264
+ "epoch": 2.91,
3265
+ "learning_rate": 1.2158681904508306e-07,
3266
+ "loss": 0.1448,
3267
+ "step": 2715
3268
+ },
3269
+ {
3270
+ "epoch": 2.91,
3271
+ "learning_rate": 1.0817234422508815e-07,
3272
+ "loss": 0.099,
3273
+ "step": 2720
3274
+ },
3275
+ {
3276
+ "epoch": 2.92,
3277
+ "learning_rate": 9.554014384474119e-08,
3278
+ "loss": 0.1657,
3279
+ "step": 2725
3280
+ },
3281
+ {
3282
+ "epoch": 2.92,
3283
+ "learning_rate": 8.369061489568453e-08,
3284
+ "loss": 0.1751,
3285
+ "step": 2730
3286
+ },
3287
+ {
3288
+ "epoch": 2.93,
3289
+ "learning_rate": 7.262412977257215e-08,
3290
+ "loss": 0.1825,
3291
+ "step": 2735
3292
+ },
3293
+ {
3294
+ "epoch": 2.93,
3295
+ "learning_rate": 6.234103626137355e-08,
3296
+ "loss": 0.2671,
3297
+ "step": 2740
3298
+ },
3299
+ {
3300
+ "epoch": 2.94,
3301
+ "learning_rate": 5.284165752844905e-08,
3302
+ "loss": 0.138,
3303
+ "step": 2745
3304
+ },
3305
+ {
3306
+ "epoch": 2.94,
3307
+ "learning_rate": 4.412629211037744e-08,
3308
+ "loss": 0.1538,
3309
+ "step": 2750
3310
+ },
3311
+ {
3312
+ "epoch": 2.95,
3313
+ "learning_rate": 3.6195213904588465e-08,
3314
+ "loss": 0.0941,
3315
+ "step": 2755
3316
+ },
3317
+ {
3318
+ "epoch": 2.96,
3319
+ "learning_rate": 2.9048672160750246e-08,
3320
+ "loss": 0.1369,
3321
+ "step": 2760
3322
+ },
3323
+ {
3324
+ "epoch": 2.96,
3325
+ "learning_rate": 2.2686891472933903e-08,
3326
+ "loss": 0.1327,
3327
+ "step": 2765
3328
+ },
3329
+ {
3330
+ "epoch": 2.97,
3331
+ "learning_rate": 1.7110071772560853e-08,
3332
+ "loss": 0.0837,
3333
+ "step": 2770
3334
+ },
3335
+ {
3336
+ "epoch": 2.97,
3337
+ "learning_rate": 1.231838832211063e-08,
3338
+ "loss": 0.2136,
3339
+ "step": 2775
3340
+ },
3341
+ {
3342
+ "epoch": 2.98,
3343
+ "learning_rate": 8.311991709619716e-09,
3344
+ "loss": 0.1371,
3345
+ "step": 2780
3346
+ },
3347
+ {
3348
+ "epoch": 2.98,
3349
+ "learning_rate": 5.091007843954776e-09,
3350
+ "loss": 0.1605,
3351
+ "step": 2785
3352
+ },
3353
+ {
3354
+ "epoch": 2.99,
3355
+ "learning_rate": 2.655537950838061e-09,
3356
+ "loss": 0.1396,
3357
+ "step": 2790
3358
+ },
3359
+ {
3360
+ "epoch": 2.99,
3361
+ "learning_rate": 1.00565856968049e-09,
3362
+ "loss": 0.0865,
3363
+ "step": 2795
3364
+ },
3365
+ {
3366
+ "epoch": 3.0,
3367
+ "learning_rate": 1.414215511780226e-10,
3368
+ "loss": 0.1582,
3369
+ "step": 2800
3370
+ },
3371
+ {
3372
+ "epoch": 3.0,
3373
+ "step": 2802,
3374
+ "total_flos": 9.781740939681792e+16,
3375
+ "train_loss": 0.424075347293623,
3376
+ "train_runtime": 2120.5143,
3377
+ "train_samples_per_second": 3.964,
3378
+ "train_steps_per_second": 1.321
3379
+ }
3380
+ ],
3381
+ "logging_steps": 5,
3382
+ "max_steps": 2802,
3383
+ "num_train_epochs": 3,
3384
+ "save_steps": 5000,
3385
+ "total_flos": 9.781740939681792e+16,
3386
+ "trial_name": null,
3387
+ "trial_params": null
3388
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3697516be7f89e5ccee07f68b65fdf1fe5a338155ff85dc776525de25b402dc8
3
+ size 4728