Walmart-the-bag
commited on
Commit
•
94e4342
1
Parent(s):
bd6ce2a
Upload folder using huggingface_hub
Browse files- all_results.json +7 -0
- config.json +32 -0
- configuration_stablelm_epoch.py +110 -0
- generation_config.json +6 -0
- modeling_stablelm_epoch.py +687 -0
- pytorch_model.bin +3 -0
- runs/Jan05_17-06-52_nl9mpqzac4/events.out.tfevents.1704474417.nl9mpqzac4.253.3 +3 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer_config.json +215 -0
- train_results.json +7 -0
- trainer_log.jsonl +0 -0
- trainer_state.json +3388 -0
- training_args.bin +3 -0
all_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"train_loss": 0.424075347293623,
|
4 |
+
"train_runtime": 2120.5143,
|
5 |
+
"train_samples_per_second": 3.964,
|
6 |
+
"train_steps_per_second": 1.321
|
7 |
+
}
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "stabilityai/stablelm-zephyr-3b",
|
3 |
+
"architectures": [
|
4 |
+
"StableLMEpochForCausalLM"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_stablelm_epoch.StableLMEpochConfig",
|
8 |
+
"AutoModel": "modeling_stablelm_epoch.StableLMEpochForCausalLM",
|
9 |
+
"AutoModelForCausalLM": "stabilityai/stablelm-zephyr-3b--modeling_stablelm_epoch.StableLMEpochForCausalLM"
|
10 |
+
},
|
11 |
+
"bos_token_id": 0,
|
12 |
+
"eos_token_id": 0,
|
13 |
+
"hidden_act": "silu",
|
14 |
+
"hidden_size": 2560,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 6912,
|
17 |
+
"max_position_embeddings": 4096,
|
18 |
+
"model_type": "stablelm_epoch",
|
19 |
+
"norm_eps": 1e-05,
|
20 |
+
"num_attention_heads": 32,
|
21 |
+
"num_heads": 32,
|
22 |
+
"num_hidden_layers": 32,
|
23 |
+
"num_key_value_heads": 32,
|
24 |
+
"rope_pct": 0.25,
|
25 |
+
"rope_theta": 10000,
|
26 |
+
"rotary_scaling_factor": 1.0,
|
27 |
+
"tie_word_embeddings": false,
|
28 |
+
"torch_dtype": "float16",
|
29 |
+
"transformers_version": "4.34.1",
|
30 |
+
"use_cache": false,
|
31 |
+
"vocab_size": 50304
|
32 |
+
}
|
configuration_stablelm_epoch.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Stability and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" StableLM Epoch model configuration"""
|
16 |
+
from transformers import PretrainedConfig
|
17 |
+
from transformers.utils import logging
|
18 |
+
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
class StableLMEpochConfig(PretrainedConfig):
|
24 |
+
r"""
|
25 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
26 |
+
documentation from [`PretrainedConfig`] for more information.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
vocab_size (`int`, *optional*, defaults to 50_304):
|
30 |
+
Vocabulary size of the StableLM model. Defines the number of different tokens that
|
31 |
+
can be represented by the `inputs_ids` passed when calling [`StableLMEpochModel`].
|
32 |
+
intermediate_size (`int`, *optional*, defaults to 6912):
|
33 |
+
Dimension of the MLP representations.
|
34 |
+
hidden_size (`int`, *optional*, defaults to 2560):
|
35 |
+
Dimension of the decoder layers and the pooler layer.
|
36 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
37 |
+
Number of hidden layers in the Transformer decoder.
|
38 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
39 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
40 |
+
num_key_value_heads (`int`, *optional*):
|
41 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
42 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
43 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
44 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
45 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
46 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
47 |
+
`num_attention_heads`.
|
48 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
49 |
+
The non-linear activation function (function or string).
|
50 |
+
rope_pct (`float`, *optional*, defaults to 1.0):
|
51 |
+
Percentage of hidden dimensions to allocate to rotary embeddings.
|
52 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
53 |
+
The base period of the RoPE embeddings.
|
54 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
55 |
+
The maximum sequence length that this model might ever be used with.
|
56 |
+
Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
|
57 |
+
initializer_range (`float`, *optional*, defaults to 1e-5):
|
58 |
+
The standard deviation of the truncated_normal_initializer for initializing
|
59 |
+
all weight matrices.
|
60 |
+
norm_eps (`float`, *optional*, defaults to 1e-8):
|
61 |
+
The epsilon used by the normalization layers.
|
62 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
63 |
+
Whether or not the model should return the last key/values attentions
|
64 |
+
(not used by all models). Only relevant if `config.is_decoder=True`.
|
65 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
66 |
+
Whether to tie weight embeddings
|
67 |
+
"""
|
68 |
+
model_type = "stablelm_epoch"
|
69 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
70 |
+
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
vocab_size=50_304,
|
74 |
+
intermediate_size=6912,
|
75 |
+
hidden_size=2560,
|
76 |
+
num_hidden_layers=32,
|
77 |
+
num_attention_heads=32,
|
78 |
+
num_key_value_heads=32,
|
79 |
+
hidden_act="silu",
|
80 |
+
rope_pct=0.25,
|
81 |
+
rope_theta=10_000,
|
82 |
+
max_position_embeddings=4096,
|
83 |
+
initializer_range=0.02,
|
84 |
+
norm_eps=1.0e-5,
|
85 |
+
use_cache=True,
|
86 |
+
bos_token_id=0,
|
87 |
+
eos_token_id=2,
|
88 |
+
tie_word_embeddings=False,
|
89 |
+
**kwargs,
|
90 |
+
):
|
91 |
+
self.vocab_size = vocab_size
|
92 |
+
self.max_position_embeddings = max_position_embeddings
|
93 |
+
self.intermediate_size = intermediate_size
|
94 |
+
self.hidden_size = hidden_size
|
95 |
+
self.num_hidden_layers = num_hidden_layers
|
96 |
+
self.num_attention_heads = num_attention_heads
|
97 |
+
self.num_key_value_heads = num_key_value_heads
|
98 |
+
self.hidden_act = hidden_act
|
99 |
+
self.rope_pct = rope_pct
|
100 |
+
self.rope_theta = rope_theta
|
101 |
+
self.initializer_range = initializer_range
|
102 |
+
self.norm_eps = norm_eps
|
103 |
+
self.use_cache = use_cache
|
104 |
+
self.tie_word_embeddings = tie_word_embeddings
|
105 |
+
super().__init__(
|
106 |
+
bos_token_id=bos_token_id,
|
107 |
+
eos_token_id=eos_token_id,
|
108 |
+
tie_word_embeddings=tie_word_embeddings,
|
109 |
+
**kwargs,
|
110 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"eos_token_id": 0,
|
5 |
+
"transformers_version": "4.34.1"
|
6 |
+
}
|
modeling_stablelm_epoch.py
ADDED
@@ -0,0 +1,687 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Stability AI, EleutherAI, and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
#
|
16 |
+
# This code is based off the following work:
|
17 |
+
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
|
18 |
+
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py
|
19 |
+
""" PyTorch StableLM Epoch model. """
|
20 |
+
from typing import Optional, Tuple, Union
|
21 |
+
import math
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.utils.checkpoint
|
25 |
+
from torch import nn
|
26 |
+
from torch.nn import CrossEntropyLoss
|
27 |
+
from transformers.modeling_outputs import (
|
28 |
+
BaseModelOutputWithPast,
|
29 |
+
CausalLMOutputWithPast,
|
30 |
+
)
|
31 |
+
from transformers.modeling_utils import PreTrainedModel
|
32 |
+
from transformers.utils import logging
|
33 |
+
from .configuration_stablelm_epoch import StableLMEpochConfig
|
34 |
+
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
|
39 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
40 |
+
def _make_causal_mask(
|
41 |
+
input_ids_shape: torch.Size,
|
42 |
+
dtype: torch.dtype,
|
43 |
+
device: torch.device,
|
44 |
+
past_key_values_length: int = 0,
|
45 |
+
):
|
46 |
+
"""Make causal mask used for bi-directional self-attention."""
|
47 |
+
batch_size, tgt_len = input_ids_shape
|
48 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(torch.float16).min, device=device)
|
49 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
50 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
51 |
+
mask = mask.to(dtype)
|
52 |
+
if past_key_values_length > 0:
|
53 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
54 |
+
return mask[None, None, :, :].expand(batch_size, 1, tgt_len, tgt_len + past_key_values_length)
|
55 |
+
|
56 |
+
|
57 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
58 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
59 |
+
"""Expands attention_mask from `[batch_size, seq_len]` to `[batch_size, 1, tgt_seq_len, src_seq_len]`."""
|
60 |
+
batch_size, src_len = mask.size()
|
61 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
62 |
+
|
63 |
+
expanded_mask = mask[:, None, None, :].expand(batch_size, 1, tgt_len, src_len).to(dtype)
|
64 |
+
inverted_mask = 1.0 - expanded_mask
|
65 |
+
|
66 |
+
return inverted_mask.masked_fill(
|
67 |
+
inverted_mask.to(torch.bool), torch.finfo(dtype).min
|
68 |
+
)
|
69 |
+
|
70 |
+
|
71 |
+
class RotaryEmbedding(nn.Module):
|
72 |
+
def __init__(
|
73 |
+
self,
|
74 |
+
dim: int,
|
75 |
+
max_position_embeddings: int,
|
76 |
+
base: int = 10_000,
|
77 |
+
device: Optional[torch.device] = None,
|
78 |
+
):
|
79 |
+
super().__init__()
|
80 |
+
|
81 |
+
self.dim = dim
|
82 |
+
self.max_position_embeddings = max_position_embeddings
|
83 |
+
self.base = base
|
84 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
|
85 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
86 |
+
|
87 |
+
# Build here to make `torch.jit.trace` work.
|
88 |
+
self._set_cos_sin_cache(
|
89 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype(),
|
90 |
+
)
|
91 |
+
|
92 |
+
def _set_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype):
|
93 |
+
self.max_seq_len_cached = seq_len
|
94 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
|
95 |
+
|
96 |
+
# Don't do einsum, it converts fp32 to fp16 under AMP
|
97 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
98 |
+
freqs = torch.outer(t, self.inv_freq)
|
99 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
100 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
101 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
102 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
103 |
+
|
104 |
+
def forward(self, x: torch.Tensor, seq_len: Optional[int] = None):
|
105 |
+
# x: [batch_size, num_heads, seq_len, head_size]
|
106 |
+
if seq_len > self.max_seq_len_cached:
|
107 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.get_default_dtype())
|
108 |
+
return (
|
109 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
110 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
111 |
+
)
|
112 |
+
|
113 |
+
|
114 |
+
def rotate_half(x: torch.Tensor):
|
115 |
+
"""Rotates half the hidden dims of the input."""
|
116 |
+
x1, x2 = torch.chunk(x, 2, dim=-1)
|
117 |
+
return torch.cat((-x2, x1), dim=-1)
|
118 |
+
|
119 |
+
|
120 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
121 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
122 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
123 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
124 |
+
cos = cos[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim]
|
125 |
+
sin = sin[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim]
|
126 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
127 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
128 |
+
return q_embed, k_embed
|
129 |
+
|
130 |
+
|
131 |
+
class MLP(nn.Module):
|
132 |
+
def __init__(self, config: StableLMEpochConfig):
|
133 |
+
super().__init__()
|
134 |
+
self.config = config
|
135 |
+
self.hidden_size = config.hidden_size
|
136 |
+
self.intermediate_size = config.intermediate_size
|
137 |
+
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
138 |
+
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
139 |
+
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
140 |
+
self.act_fn = nn.SiLU()
|
141 |
+
|
142 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
143 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
144 |
+
|
145 |
+
|
146 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
147 |
+
"""
|
148 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
149 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
150 |
+
"""
|
151 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
152 |
+
if n_rep == 1:
|
153 |
+
return hidden_states
|
154 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
155 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
156 |
+
|
157 |
+
|
158 |
+
class Attention(nn.Module):
|
159 |
+
def __init__(self, config: StableLMEpochConfig):
|
160 |
+
super().__init__()
|
161 |
+
self.config = config
|
162 |
+
self.hidden_size = config.hidden_size
|
163 |
+
self.num_heads = config.num_attention_heads
|
164 |
+
self.head_dim = self.hidden_size // self.num_heads
|
165 |
+
self.num_key_value_heads = config.num_key_value_heads
|
166 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
167 |
+
self.max_position_embeddings = config.max_position_embeddings
|
168 |
+
|
169 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
170 |
+
raise ValueError(
|
171 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
172 |
+
f" and `num_heads`: {self.num_heads})."
|
173 |
+
)
|
174 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
175 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
176 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
177 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
178 |
+
|
179 |
+
self._init_rope()
|
180 |
+
|
181 |
+
def _init_rope(self):
|
182 |
+
self.rotary_ndims = int(self.head_dim * self.config.rope_pct)
|
183 |
+
self.rotary_emb = RotaryEmbedding(
|
184 |
+
self.rotary_ndims,
|
185 |
+
max_position_embeddings=self.config.max_position_embeddings,
|
186 |
+
base=self.config.rope_theta,
|
187 |
+
)
|
188 |
+
|
189 |
+
def forward(
|
190 |
+
self,
|
191 |
+
hidden_states: torch.FloatTensor,
|
192 |
+
attention_mask: torch.FloatTensor,
|
193 |
+
position_ids: torch.LongTensor,
|
194 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
195 |
+
output_attentions: Optional[bool] = False,
|
196 |
+
use_cache: Optional[bool] = False,
|
197 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
198 |
+
bsz, q_len, _ = hidden_states.size()
|
199 |
+
|
200 |
+
query_states = self.q_proj(hidden_states)
|
201 |
+
key_states = self.k_proj(hidden_states)
|
202 |
+
value_states = self.v_proj(hidden_states)
|
203 |
+
|
204 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
205 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
206 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
207 |
+
|
208 |
+
query_rot = query_states[..., : self.rotary_ndims]
|
209 |
+
query_pass = query_states[..., self.rotary_ndims :]
|
210 |
+
key_rot = key_states[..., : self.rotary_ndims]
|
211 |
+
key_pass = key_states[..., self.rotary_ndims :]
|
212 |
+
|
213 |
+
kv_seq_len = key_states.shape[-2]
|
214 |
+
if past_key_value is not None:
|
215 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
216 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
217 |
+
query_states, key_states = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
|
218 |
+
|
219 |
+
# [batch_size, num_heads, seq_len, head_dim]
|
220 |
+
query_states = torch.cat((query_states, query_pass), dim=-1)
|
221 |
+
key_states = torch.cat((key_states, key_pass), dim=-1)
|
222 |
+
|
223 |
+
if past_key_value is not None:
|
224 |
+
# Reuse k, v, self_attention
|
225 |
+
key_states = torch.cat((past_key_value[0], key_states), dim=2)
|
226 |
+
value_states = torch.cat((past_key_value[1], value_states), dim=2)
|
227 |
+
|
228 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
229 |
+
|
230 |
+
# Repeat k/v heads if n_kv_heads < n_heads
|
231 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
232 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
233 |
+
|
234 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
235 |
+
|
236 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
237 |
+
raise ValueError(
|
238 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
239 |
+
f" {attn_weights.size()}"
|
240 |
+
)
|
241 |
+
|
242 |
+
if attention_mask is not None:
|
243 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
244 |
+
raise ValueError(
|
245 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
246 |
+
)
|
247 |
+
attn_weights = attn_weights + attention_mask
|
248 |
+
|
249 |
+
# Upcast attention to fp32
|
250 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
251 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
252 |
+
|
253 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
254 |
+
raise ValueError(
|
255 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
256 |
+
f" {attn_output.size()}"
|
257 |
+
)
|
258 |
+
|
259 |
+
# Merge heads
|
260 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
261 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
262 |
+
|
263 |
+
# Final linear projection
|
264 |
+
attn_output = self.o_proj(attn_output)
|
265 |
+
|
266 |
+
if not output_attentions:
|
267 |
+
attn_weights = None
|
268 |
+
|
269 |
+
return attn_output, attn_weights, past_key_value
|
270 |
+
|
271 |
+
|
272 |
+
class DecoderLayer(nn.Module):
|
273 |
+
def __init__(self, config: StableLMEpochConfig):
|
274 |
+
super().__init__()
|
275 |
+
self.self_attn = Attention(config)
|
276 |
+
self.mlp = MLP(config)
|
277 |
+
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
|
278 |
+
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
|
279 |
+
|
280 |
+
def forward(
|
281 |
+
self,
|
282 |
+
hidden_states: Optional[torch.FloatTensor],
|
283 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
284 |
+
position_ids: Optional[torch.LongTensor] = None,
|
285 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
286 |
+
output_attentions: Optional[bool] = False,
|
287 |
+
use_cache: Optional[bool] = False,
|
288 |
+
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
289 |
+
residual = hidden_states
|
290 |
+
|
291 |
+
hidden_states = self.input_layernorm(hidden_states)
|
292 |
+
|
293 |
+
# Self Attention
|
294 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
295 |
+
hidden_states=hidden_states,
|
296 |
+
attention_mask=attention_mask,
|
297 |
+
position_ids=position_ids,
|
298 |
+
past_key_value=past_key_value,
|
299 |
+
output_attentions=output_attentions,
|
300 |
+
use_cache=use_cache,
|
301 |
+
)
|
302 |
+
hidden_states = residual + hidden_states
|
303 |
+
|
304 |
+
# Fully Connected
|
305 |
+
residual = hidden_states
|
306 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
307 |
+
hidden_states = self.mlp(hidden_states)
|
308 |
+
hidden_states = residual + hidden_states
|
309 |
+
|
310 |
+
outputs = (hidden_states,)
|
311 |
+
|
312 |
+
if output_attentions:
|
313 |
+
outputs += (self_attn_weights,)
|
314 |
+
|
315 |
+
if use_cache:
|
316 |
+
outputs += (present_key_value,)
|
317 |
+
|
318 |
+
return outputs
|
319 |
+
|
320 |
+
|
321 |
+
class StableLMEpochPreTrainedModel(PreTrainedModel):
|
322 |
+
"""An abstract class to handle weights initialization and a simple interface
|
323 |
+
for downloading and loading pretrained models.
|
324 |
+
"""
|
325 |
+
|
326 |
+
config_class = StableLMEpochConfig
|
327 |
+
base_model_prefix = "transformer"
|
328 |
+
supports_gradient_checkpointing = True
|
329 |
+
_no_split_modules = ["DecoderLayer"]
|
330 |
+
_skip_keys_device_placement = "past_key_values"
|
331 |
+
|
332 |
+
def _init_weights(self, module: nn.Module):
|
333 |
+
"""Initialize the weights"""
|
334 |
+
if isinstance(module, nn.Linear):
|
335 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
336 |
+
if module.bias is not None:
|
337 |
+
module.bias.data.zero_()
|
338 |
+
elif isinstance(module, nn.Embedding):
|
339 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
340 |
+
if module.padding_idx is not None:
|
341 |
+
module.weight.data[module.padding_idx].zero_()
|
342 |
+
elif isinstance(module, nn.LayerNorm):
|
343 |
+
module.bias.data.zero_()
|
344 |
+
module.weight.data.fill_(1.0)
|
345 |
+
|
346 |
+
def _set_gradient_checkpointing(self, module: nn.Module, value=False):
|
347 |
+
if isinstance(module, StableLMEpochModel):
|
348 |
+
module.gradient_checkpointing = value
|
349 |
+
|
350 |
+
|
351 |
+
class StableLMEpochModel(StableLMEpochPreTrainedModel):
|
352 |
+
def __init__(self, config: StableLMEpochConfig):
|
353 |
+
super().__init__(config)
|
354 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
|
355 |
+
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
356 |
+
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
|
357 |
+
|
358 |
+
self.gradient_checkpointing = False
|
359 |
+
# Initialize weights and apply final processing
|
360 |
+
self.post_init()
|
361 |
+
|
362 |
+
def get_input_embeddings(self):
|
363 |
+
return self.embed_tokens
|
364 |
+
|
365 |
+
def set_input_embeddings(self, value: nn.Module):
|
366 |
+
self.embed_tokens = value
|
367 |
+
|
368 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
369 |
+
def _prepare_decoder_attention_mask(
|
370 |
+
self,
|
371 |
+
attention_mask: torch.Tensor,
|
372 |
+
input_shape: torch.Size,
|
373 |
+
inputs_embeds: torch.Tensor,
|
374 |
+
past_key_values_length: int,
|
375 |
+
):
|
376 |
+
# Create causal mask
|
377 |
+
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
|
378 |
+
combined_attention_mask = None
|
379 |
+
if input_shape[-1] > 1:
|
380 |
+
combined_attention_mask = _make_causal_mask(
|
381 |
+
input_shape,
|
382 |
+
inputs_embeds.dtype,
|
383 |
+
device=inputs_embeds.device,
|
384 |
+
past_key_values_length=past_key_values_length,
|
385 |
+
)
|
386 |
+
|
387 |
+
if attention_mask is not None:
|
388 |
+
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
|
389 |
+
expanded_attn_mask = _expand_mask(
|
390 |
+
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
391 |
+
).to(inputs_embeds.device)
|
392 |
+
combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
393 |
+
|
394 |
+
return combined_attention_mask
|
395 |
+
|
396 |
+
def forward(
|
397 |
+
self,
|
398 |
+
input_ids: Optional[torch.LongTensor] = None,
|
399 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
400 |
+
position_ids: Optional[torch.LongTensor] = None,
|
401 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
402 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
403 |
+
use_cache: Optional[bool] = None,
|
404 |
+
output_attentions: Optional[bool] = None,
|
405 |
+
output_hidden_states: Optional[bool] = None,
|
406 |
+
return_dict: Optional[bool] = None,
|
407 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
408 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
409 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
410 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
411 |
+
|
412 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
413 |
+
|
414 |
+
# Retrieve input_ids and inputs_embeds
|
415 |
+
if input_ids is not None and inputs_embeds is not None:
|
416 |
+
raise ValueError(
|
417 |
+
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
|
418 |
+
)
|
419 |
+
elif input_ids is not None:
|
420 |
+
batch_size, seq_length = input_ids.shape
|
421 |
+
elif inputs_embeds is not None:
|
422 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
423 |
+
else:
|
424 |
+
raise ValueError(
|
425 |
+
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
426 |
+
)
|
427 |
+
|
428 |
+
seq_length_with_past = seq_length
|
429 |
+
past_key_values_length = 0
|
430 |
+
|
431 |
+
if past_key_values is not None:
|
432 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
433 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
434 |
+
|
435 |
+
if position_ids is None:
|
436 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
437 |
+
position_ids = torch.arange(
|
438 |
+
past_key_values_length,
|
439 |
+
seq_length + past_key_values_length,
|
440 |
+
dtype=torch.long,
|
441 |
+
device=device,
|
442 |
+
)
|
443 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
444 |
+
else:
|
445 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
446 |
+
|
447 |
+
if inputs_embeds is None:
|
448 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
449 |
+
# Embed positions
|
450 |
+
if attention_mask is None:
|
451 |
+
attention_mask = torch.ones(
|
452 |
+
(batch_size, seq_length_with_past),
|
453 |
+
dtype=torch.bool,
|
454 |
+
device=inputs_embeds.device,
|
455 |
+
)
|
456 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
457 |
+
attention_mask,
|
458 |
+
(batch_size, seq_length),
|
459 |
+
inputs_embeds,
|
460 |
+
past_key_values_length,
|
461 |
+
)
|
462 |
+
|
463 |
+
hidden_states = inputs_embeds
|
464 |
+
|
465 |
+
if self.gradient_checkpointing and self.training:
|
466 |
+
if use_cache:
|
467 |
+
logger.warning(
|
468 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
469 |
+
)
|
470 |
+
use_cache = False
|
471 |
+
|
472 |
+
# Decoder layers
|
473 |
+
all_hidden_states = () if output_hidden_states else None
|
474 |
+
all_self_attns = () if output_attentions else None
|
475 |
+
next_decoder_cache = () if use_cache else None
|
476 |
+
|
477 |
+
for idx, decoder_layer in enumerate(self.layers):
|
478 |
+
if output_hidden_states:
|
479 |
+
all_hidden_states += (hidden_states,)
|
480 |
+
|
481 |
+
past_key_value = (
|
482 |
+
past_key_values[idx] if past_key_values is not None else None
|
483 |
+
)
|
484 |
+
|
485 |
+
if self.gradient_checkpointing and self.training:
|
486 |
+
|
487 |
+
def create_custom_forward(module):
|
488 |
+
def custom_forward(*inputs):
|
489 |
+
# None for past_key_value
|
490 |
+
return module(*inputs, past_key_value, output_attentions)
|
491 |
+
|
492 |
+
return custom_forward
|
493 |
+
|
494 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
495 |
+
create_custom_forward(decoder_layer),
|
496 |
+
hidden_states,
|
497 |
+
attention_mask,
|
498 |
+
position_ids,
|
499 |
+
)
|
500 |
+
else:
|
501 |
+
layer_outputs = decoder_layer(
|
502 |
+
hidden_states,
|
503 |
+
attention_mask=attention_mask,
|
504 |
+
position_ids=position_ids,
|
505 |
+
past_key_value=past_key_value,
|
506 |
+
output_attentions=output_attentions,
|
507 |
+
use_cache=use_cache,
|
508 |
+
)
|
509 |
+
|
510 |
+
hidden_states = layer_outputs[0]
|
511 |
+
|
512 |
+
if use_cache:
|
513 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
514 |
+
|
515 |
+
if output_attentions:
|
516 |
+
all_self_attns += (layer_outputs[1],)
|
517 |
+
|
518 |
+
hidden_states = self.norm(hidden_states)
|
519 |
+
|
520 |
+
# Add hidden states from the last decoder layer
|
521 |
+
if output_hidden_states:
|
522 |
+
all_hidden_states += (hidden_states,)
|
523 |
+
|
524 |
+
next_cache = next_decoder_cache if use_cache else None
|
525 |
+
if not return_dict:
|
526 |
+
return tuple(
|
527 |
+
v
|
528 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
529 |
+
if v is not None
|
530 |
+
)
|
531 |
+
return BaseModelOutputWithPast(
|
532 |
+
last_hidden_state=hidden_states,
|
533 |
+
past_key_values=next_cache,
|
534 |
+
hidden_states=all_hidden_states,
|
535 |
+
attentions=all_self_attns,
|
536 |
+
)
|
537 |
+
|
538 |
+
|
539 |
+
class StableLMEpochForCausalLM(StableLMEpochPreTrainedModel):
|
540 |
+
_tied_weights_keys = ["lm_head.weight"]
|
541 |
+
|
542 |
+
def __init__(self, config: StableLMEpochConfig):
|
543 |
+
super().__init__(config)
|
544 |
+
|
545 |
+
self.model = StableLMEpochModel(config)
|
546 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
547 |
+
|
548 |
+
# Initialize weights and apply final processing
|
549 |
+
self.post_init()
|
550 |
+
|
551 |
+
def get_input_embeddings(self):
|
552 |
+
return self.model.embed_tokens
|
553 |
+
|
554 |
+
def set_input_embeddings(self, value):
|
555 |
+
self.model.embed_tokens = value
|
556 |
+
|
557 |
+
def get_output_embeddings(self):
|
558 |
+
return self.lm_head
|
559 |
+
|
560 |
+
def set_output_embeddings(self, new_embeddings: nn.Module):
|
561 |
+
self.lm_head = new_embeddings
|
562 |
+
|
563 |
+
def get_decoder(self):
|
564 |
+
return self.model
|
565 |
+
|
566 |
+
def set_decoder(self, decoder):
|
567 |
+
self.model = decoder
|
568 |
+
|
569 |
+
def forward(
|
570 |
+
self,
|
571 |
+
input_ids: Optional[torch.LongTensor] = None,
|
572 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
573 |
+
position_ids: Optional[torch.LongTensor] = None,
|
574 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
575 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
576 |
+
labels: Optional[torch.LongTensor] = None,
|
577 |
+
use_cache: Optional[bool] = None,
|
578 |
+
output_attentions: Optional[bool] = None,
|
579 |
+
output_hidden_states: Optional[bool] = None,
|
580 |
+
return_dict: Optional[bool] = None,
|
581 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
582 |
+
output_attentions = (
|
583 |
+
output_attentions
|
584 |
+
if output_attentions is not None
|
585 |
+
else self.config.output_attentions
|
586 |
+
)
|
587 |
+
output_hidden_states = (
|
588 |
+
output_hidden_states
|
589 |
+
if output_hidden_states is not None
|
590 |
+
else self.config.output_hidden_states
|
591 |
+
)
|
592 |
+
return_dict = (
|
593 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
594 |
+
)
|
595 |
+
|
596 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
597 |
+
outputs = self.model(
|
598 |
+
input_ids,
|
599 |
+
attention_mask=attention_mask,
|
600 |
+
position_ids=position_ids,
|
601 |
+
past_key_values=past_key_values,
|
602 |
+
inputs_embeds=inputs_embeds,
|
603 |
+
use_cache=use_cache,
|
604 |
+
output_attentions=output_attentions,
|
605 |
+
output_hidden_states=output_hidden_states,
|
606 |
+
return_dict=return_dict,
|
607 |
+
)
|
608 |
+
|
609 |
+
hidden_states = outputs[0]
|
610 |
+
logits = self.lm_head(hidden_states).float()
|
611 |
+
|
612 |
+
loss = None
|
613 |
+
if labels is not None:
|
614 |
+
# Shift so that tokens < n predict n
|
615 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
616 |
+
shift_labels = labels[..., 1:].contiguous()
|
617 |
+
# Flatten the tokens
|
618 |
+
loss_fct = CrossEntropyLoss()
|
619 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
620 |
+
shift_labels = shift_labels.view(-1)
|
621 |
+
# Enable model parallelism
|
622 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
623 |
+
loss = loss_fct(shift_logits, shift_labels)
|
624 |
+
|
625 |
+
if not return_dict:
|
626 |
+
output = (logits,) + outputs[1:]
|
627 |
+
return (loss,) + output if loss is not None else output
|
628 |
+
|
629 |
+
return CausalLMOutputWithPast(
|
630 |
+
loss=loss,
|
631 |
+
logits=logits,
|
632 |
+
past_key_values=outputs.past_key_values,
|
633 |
+
hidden_states=outputs.hidden_states,
|
634 |
+
attentions=outputs.attentions,
|
635 |
+
)
|
636 |
+
|
637 |
+
def prepare_inputs_for_generation(
|
638 |
+
self,
|
639 |
+
input_ids,
|
640 |
+
past_key_values: Optional[torch.Tensor] = None,
|
641 |
+
attention_mask: Optional[torch.Tensor] = None,
|
642 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
643 |
+
**kwargs,
|
644 |
+
):
|
645 |
+
# Trim decoder_input_ids if past is used
|
646 |
+
if past_key_values and past_key_values[0] is not None:
|
647 |
+
input_ids = input_ids[:, -1:]
|
648 |
+
|
649 |
+
position_ids = kwargs.get("position_ids", None)
|
650 |
+
if attention_mask is not None and position_ids is None:
|
651 |
+
# Create position_ids on the fly for batch generation
|
652 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
653 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
654 |
+
if past_key_values:
|
655 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
656 |
+
|
657 |
+
# If `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
658 |
+
if inputs_embeds is not None and past_key_values is None:
|
659 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
660 |
+
else:
|
661 |
+
model_inputs = {"input_ids": input_ids}
|
662 |
+
|
663 |
+
model_inputs.update(
|
664 |
+
{
|
665 |
+
"attention_mask": attention_mask,
|
666 |
+
"past_key_values": past_key_values,
|
667 |
+
"use_cache": kwargs.get("use_cache"),
|
668 |
+
"position_ids": position_ids,
|
669 |
+
}
|
670 |
+
)
|
671 |
+
return model_inputs
|
672 |
+
|
673 |
+
@staticmethod
|
674 |
+
def _reorder_cache(past_key_values, beam_idx):
|
675 |
+
reordered_past = ()
|
676 |
+
for layer_past in past_key_values:
|
677 |
+
reordered_past += (
|
678 |
+
tuple(
|
679 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
680 |
+
for past_state in layer_past
|
681 |
+
),
|
682 |
+
)
|
683 |
+
return reordered_past
|
684 |
+
|
685 |
+
|
686 |
+
StableLMEpochConfig.register_for_auto_class()
|
687 |
+
StableLMEpochForCausalLM.register_for_auto_class("AutoModelForCausalLM")
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c60b9ede1bc6aae111c76a5ad9492ef1c17ac31d3034b27e14a0a80349d198c5
|
3 |
+
size 5909512626
|
runs/Jan05_17-06-52_nl9mpqzac4/events.out.tfevents.1704474417.nl9mpqzac4.253.3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c58ae6034bf216fa7f39abcb82ef6c0779151f76d8bc4b695d25aaac67a3d73b
|
3 |
+
size 92791
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<|endoftext|>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<|padding|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"50254": {
|
21 |
+
"content": " ",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": false
|
27 |
+
},
|
28 |
+
"50255": {
|
29 |
+
"content": " ",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": true,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": false
|
35 |
+
},
|
36 |
+
"50256": {
|
37 |
+
"content": " ",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": true,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": false
|
43 |
+
},
|
44 |
+
"50257": {
|
45 |
+
"content": " ",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": true,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": false
|
51 |
+
},
|
52 |
+
"50258": {
|
53 |
+
"content": " ",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": true,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": false
|
59 |
+
},
|
60 |
+
"50259": {
|
61 |
+
"content": " ",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": true,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": false
|
67 |
+
},
|
68 |
+
"50260": {
|
69 |
+
"content": " ",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": true,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": false
|
75 |
+
},
|
76 |
+
"50261": {
|
77 |
+
"content": " ",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": true,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": false
|
83 |
+
},
|
84 |
+
"50262": {
|
85 |
+
"content": " ",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": true,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": false
|
91 |
+
},
|
92 |
+
"50263": {
|
93 |
+
"content": " ",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": true,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": false
|
99 |
+
},
|
100 |
+
"50264": {
|
101 |
+
"content": " ",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": true,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": false
|
107 |
+
},
|
108 |
+
"50265": {
|
109 |
+
"content": " ",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": true,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": false
|
115 |
+
},
|
116 |
+
"50266": {
|
117 |
+
"content": " ",
|
118 |
+
"lstrip": false,
|
119 |
+
"normalized": true,
|
120 |
+
"rstrip": false,
|
121 |
+
"single_word": false,
|
122 |
+
"special": false
|
123 |
+
},
|
124 |
+
"50267": {
|
125 |
+
"content": " ",
|
126 |
+
"lstrip": false,
|
127 |
+
"normalized": true,
|
128 |
+
"rstrip": false,
|
129 |
+
"single_word": false,
|
130 |
+
"special": false
|
131 |
+
},
|
132 |
+
"50268": {
|
133 |
+
"content": " ",
|
134 |
+
"lstrip": false,
|
135 |
+
"normalized": true,
|
136 |
+
"rstrip": false,
|
137 |
+
"single_word": false,
|
138 |
+
"special": false
|
139 |
+
},
|
140 |
+
"50269": {
|
141 |
+
"content": " ",
|
142 |
+
"lstrip": false,
|
143 |
+
"normalized": true,
|
144 |
+
"rstrip": false,
|
145 |
+
"single_word": false,
|
146 |
+
"special": false
|
147 |
+
},
|
148 |
+
"50270": {
|
149 |
+
"content": " ",
|
150 |
+
"lstrip": false,
|
151 |
+
"normalized": true,
|
152 |
+
"rstrip": false,
|
153 |
+
"single_word": false,
|
154 |
+
"special": false
|
155 |
+
},
|
156 |
+
"50271": {
|
157 |
+
"content": " ",
|
158 |
+
"lstrip": false,
|
159 |
+
"normalized": true,
|
160 |
+
"rstrip": false,
|
161 |
+
"single_word": false,
|
162 |
+
"special": false
|
163 |
+
},
|
164 |
+
"50272": {
|
165 |
+
"content": " ",
|
166 |
+
"lstrip": false,
|
167 |
+
"normalized": true,
|
168 |
+
"rstrip": false,
|
169 |
+
"single_word": false,
|
170 |
+
"special": false
|
171 |
+
},
|
172 |
+
"50273": {
|
173 |
+
"content": " ",
|
174 |
+
"lstrip": false,
|
175 |
+
"normalized": true,
|
176 |
+
"rstrip": false,
|
177 |
+
"single_word": false,
|
178 |
+
"special": false
|
179 |
+
},
|
180 |
+
"50274": {
|
181 |
+
"content": " ",
|
182 |
+
"lstrip": false,
|
183 |
+
"normalized": true,
|
184 |
+
"rstrip": false,
|
185 |
+
"single_word": false,
|
186 |
+
"special": false
|
187 |
+
},
|
188 |
+
"50275": {
|
189 |
+
"content": " ",
|
190 |
+
"lstrip": false,
|
191 |
+
"normalized": true,
|
192 |
+
"rstrip": false,
|
193 |
+
"single_word": false,
|
194 |
+
"special": false
|
195 |
+
},
|
196 |
+
"50276": {
|
197 |
+
"content": " ",
|
198 |
+
"lstrip": false,
|
199 |
+
"normalized": true,
|
200 |
+
"rstrip": false,
|
201 |
+
"single_word": false,
|
202 |
+
"special": false
|
203 |
+
}
|
204 |
+
},
|
205 |
+
"bos_token": "<|endoftext|>",
|
206 |
+
"chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
|
207 |
+
"clean_up_tokenization_spaces": true,
|
208 |
+
"eos_token": "<|endoftext|>",
|
209 |
+
"model_max_length": 2048,
|
210 |
+
"pad_token": "<|endoftext|>",
|
211 |
+
"padding_side": "right",
|
212 |
+
"split_special_tokens": false,
|
213 |
+
"tokenizer_class": "GPTNeoXTokenizer",
|
214 |
+
"unk_token": "<|endoftext|>"
|
215 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"train_loss": 0.424075347293623,
|
4 |
+
"train_runtime": 2120.5143,
|
5 |
+
"train_samples_per_second": 3.964,
|
6 |
+
"train_steps_per_second": 1.321
|
7 |
+
}
|
trainer_log.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
trainer_state.json
ADDED
@@ -0,0 +1,3388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 3.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 2802,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"learning_rate": 4.999960716301628e-05,
|
14 |
+
"loss": 0.9669,
|
15 |
+
"step": 5
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.01,
|
19 |
+
"learning_rate": 4.999842866441079e-05,
|
20 |
+
"loss": 0.8795,
|
21 |
+
"step": 10
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.02,
|
25 |
+
"learning_rate": 4.9996464541220155e-05,
|
26 |
+
"loss": 1.1216,
|
27 |
+
"step": 15
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.02,
|
31 |
+
"learning_rate": 4.999371485517079e-05,
|
32 |
+
"loss": 0.6686,
|
33 |
+
"step": 20
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.03,
|
37 |
+
"learning_rate": 4.999017969267698e-05,
|
38 |
+
"loss": 0.8372,
|
39 |
+
"step": 25
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.03,
|
43 |
+
"learning_rate": 4.99858591648381e-05,
|
44 |
+
"loss": 0.7397,
|
45 |
+
"step": 30
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.04,
|
49 |
+
"learning_rate": 4.9980753407435234e-05,
|
50 |
+
"loss": 0.8539,
|
51 |
+
"step": 35
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.04,
|
55 |
+
"learning_rate": 4.99748625809268e-05,
|
56 |
+
"loss": 1.0454,
|
57 |
+
"step": 40
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.05,
|
61 |
+
"learning_rate": 4.9968186870443544e-05,
|
62 |
+
"loss": 0.7646,
|
63 |
+
"step": 45
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.05,
|
67 |
+
"learning_rate": 4.9960726485782755e-05,
|
68 |
+
"loss": 0.8626,
|
69 |
+
"step": 50
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.06,
|
73 |
+
"learning_rate": 4.995248166140163e-05,
|
74 |
+
"loss": 0.8773,
|
75 |
+
"step": 55
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.06,
|
79 |
+
"learning_rate": 4.994345265640994e-05,
|
80 |
+
"loss": 0.5691,
|
81 |
+
"step": 60
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.07,
|
85 |
+
"learning_rate": 4.9933639754561824e-05,
|
86 |
+
"loss": 0.6205,
|
87 |
+
"step": 65
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.07,
|
91 |
+
"learning_rate": 4.9923043264246965e-05,
|
92 |
+
"loss": 0.6391,
|
93 |
+
"step": 70
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.08,
|
97 |
+
"learning_rate": 4.9911663518480824e-05,
|
98 |
+
"loss": 0.5564,
|
99 |
+
"step": 75
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.09,
|
103 |
+
"learning_rate": 4.989950087489419e-05,
|
104 |
+
"loss": 0.5848,
|
105 |
+
"step": 80
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.09,
|
109 |
+
"learning_rate": 4.9886555715721964e-05,
|
110 |
+
"loss": 0.9124,
|
111 |
+
"step": 85
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.1,
|
115 |
+
"learning_rate": 4.9872828447791135e-05,
|
116 |
+
"loss": 0.5695,
|
117 |
+
"step": 90
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.1,
|
121 |
+
"learning_rate": 4.985831950250798e-05,
|
122 |
+
"loss": 0.5616,
|
123 |
+
"step": 95
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.11,
|
127 |
+
"learning_rate": 4.9843029335844535e-05,
|
128 |
+
"loss": 0.6667,
|
129 |
+
"step": 100
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.11,
|
133 |
+
"learning_rate": 4.982695842832421e-05,
|
134 |
+
"loss": 0.7367,
|
135 |
+
"step": 105
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.12,
|
139 |
+
"learning_rate": 4.9810107285006785e-05,
|
140 |
+
"loss": 0.9258,
|
141 |
+
"step": 110
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.12,
|
145 |
+
"learning_rate": 4.979247643547242e-05,
|
146 |
+
"loss": 0.8087,
|
147 |
+
"step": 115
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.13,
|
151 |
+
"learning_rate": 4.977406643380511e-05,
|
152 |
+
"loss": 0.8627,
|
153 |
+
"step": 120
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.13,
|
157 |
+
"learning_rate": 4.97548778585752e-05,
|
158 |
+
"loss": 0.633,
|
159 |
+
"step": 125
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.14,
|
163 |
+
"learning_rate": 4.973491131282127e-05,
|
164 |
+
"loss": 1.0985,
|
165 |
+
"step": 130
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.14,
|
169 |
+
"learning_rate": 4.971416742403112e-05,
|
170 |
+
"loss": 0.9516,
|
171 |
+
"step": 135
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.15,
|
175 |
+
"learning_rate": 4.969264684412208e-05,
|
176 |
+
"loss": 0.8711,
|
177 |
+
"step": 140
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.16,
|
181 |
+
"learning_rate": 4.967035024942054e-05,
|
182 |
+
"loss": 0.7193,
|
183 |
+
"step": 145
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.16,
|
187 |
+
"learning_rate": 4.9647278340640644e-05,
|
188 |
+
"loss": 0.8416,
|
189 |
+
"step": 150
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.17,
|
193 |
+
"learning_rate": 4.9623431842862335e-05,
|
194 |
+
"loss": 0.6761,
|
195 |
+
"step": 155
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.17,
|
199 |
+
"learning_rate": 4.9598811505508504e-05,
|
200 |
+
"loss": 0.6659,
|
201 |
+
"step": 160
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.18,
|
205 |
+
"learning_rate": 4.957341810232147e-05,
|
206 |
+
"loss": 0.6969,
|
207 |
+
"step": 165
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.18,
|
211 |
+
"learning_rate": 4.954725243133868e-05,
|
212 |
+
"loss": 0.8674,
|
213 |
+
"step": 170
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.19,
|
217 |
+
"learning_rate": 4.952031531486758e-05,
|
218 |
+
"loss": 0.8668,
|
219 |
+
"step": 175
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.19,
|
223 |
+
"learning_rate": 4.949260759945984e-05,
|
224 |
+
"loss": 0.7499,
|
225 |
+
"step": 180
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.2,
|
229 |
+
"learning_rate": 4.946413015588466e-05,
|
230 |
+
"loss": 1.0306,
|
231 |
+
"step": 185
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.2,
|
235 |
+
"learning_rate": 4.9434883879101496e-05,
|
236 |
+
"loss": 0.8853,
|
237 |
+
"step": 190
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.21,
|
241 |
+
"learning_rate": 4.940486968823188e-05,
|
242 |
+
"loss": 0.8703,
|
243 |
+
"step": 195
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.21,
|
247 |
+
"learning_rate": 4.937408852653055e-05,
|
248 |
+
"loss": 0.8031,
|
249 |
+
"step": 200
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.22,
|
253 |
+
"learning_rate": 4.934254136135581e-05,
|
254 |
+
"loss": 1.2864,
|
255 |
+
"step": 205
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.22,
|
259 |
+
"learning_rate": 4.93102291841391e-05,
|
260 |
+
"loss": 0.6821,
|
261 |
+
"step": 210
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.23,
|
265 |
+
"learning_rate": 4.9277153010353895e-05,
|
266 |
+
"loss": 0.7472,
|
267 |
+
"step": 215
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.24,
|
271 |
+
"learning_rate": 4.9243313879483734e-05,
|
272 |
+
"loss": 1.2898,
|
273 |
+
"step": 220
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.24,
|
277 |
+
"learning_rate": 4.920871285498958e-05,
|
278 |
+
"loss": 1.0007,
|
279 |
+
"step": 225
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.25,
|
283 |
+
"learning_rate": 4.917335102427642e-05,
|
284 |
+
"loss": 0.8147,
|
285 |
+
"step": 230
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.25,
|
289 |
+
"learning_rate": 4.913722949865902e-05,
|
290 |
+
"loss": 0.771,
|
291 |
+
"step": 235
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.26,
|
295 |
+
"learning_rate": 4.91003494133271e-05,
|
296 |
+
"loss": 0.8844,
|
297 |
+
"step": 240
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.26,
|
301 |
+
"learning_rate": 4.9062711927309564e-05,
|
302 |
+
"loss": 0.7669,
|
303 |
+
"step": 245
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.27,
|
307 |
+
"learning_rate": 4.902431822343813e-05,
|
308 |
+
"loss": 1.0498,
|
309 |
+
"step": 250
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.27,
|
313 |
+
"learning_rate": 4.898516950831015e-05,
|
314 |
+
"loss": 0.5262,
|
315 |
+
"step": 255
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.28,
|
319 |
+
"learning_rate": 4.894526701225068e-05,
|
320 |
+
"loss": 0.8268,
|
321 |
+
"step": 260
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.28,
|
325 |
+
"learning_rate": 4.8904611989273804e-05,
|
326 |
+
"loss": 1.1978,
|
327 |
+
"step": 265
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.29,
|
331 |
+
"learning_rate": 4.8863205717043257e-05,
|
332 |
+
"loss": 0.7573,
|
333 |
+
"step": 270
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.29,
|
337 |
+
"learning_rate": 4.882104949683225e-05,
|
338 |
+
"loss": 0.9093,
|
339 |
+
"step": 275
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.3,
|
343 |
+
"learning_rate": 4.877814465348256e-05,
|
344 |
+
"loss": 0.5426,
|
345 |
+
"step": 280
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.31,
|
349 |
+
"learning_rate": 4.873449253536295e-05,
|
350 |
+
"loss": 0.5552,
|
351 |
+
"step": 285
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 0.31,
|
355 |
+
"learning_rate": 4.8690094514326713e-05,
|
356 |
+
"loss": 0.756,
|
357 |
+
"step": 290
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.32,
|
361 |
+
"learning_rate": 4.864495198566863e-05,
|
362 |
+
"loss": 0.8122,
|
363 |
+
"step": 295
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 0.32,
|
367 |
+
"learning_rate": 4.859906636808108e-05,
|
368 |
+
"loss": 0.6565,
|
369 |
+
"step": 300
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.33,
|
373 |
+
"learning_rate": 4.855243910360948e-05,
|
374 |
+
"loss": 0.7606,
|
375 |
+
"step": 305
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.33,
|
379 |
+
"learning_rate": 4.8505071657606936e-05,
|
380 |
+
"loss": 0.6584,
|
381 |
+
"step": 310
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.34,
|
385 |
+
"learning_rate": 4.845696551868823e-05,
|
386 |
+
"loss": 0.8891,
|
387 |
+
"step": 315
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.34,
|
391 |
+
"learning_rate": 4.840812219868299e-05,
|
392 |
+
"loss": 0.7888,
|
393 |
+
"step": 320
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.35,
|
397 |
+
"learning_rate": 4.835854323258822e-05,
|
398 |
+
"loss": 0.804,
|
399 |
+
"step": 325
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.35,
|
403 |
+
"learning_rate": 4.830823017852004e-05,
|
404 |
+
"loss": 0.6016,
|
405 |
+
"step": 330
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.36,
|
409 |
+
"learning_rate": 4.825718461766473e-05,
|
410 |
+
"loss": 0.7443,
|
411 |
+
"step": 335
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.36,
|
415 |
+
"learning_rate": 4.820540815422901e-05,
|
416 |
+
"loss": 0.7805,
|
417 |
+
"step": 340
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.37,
|
421 |
+
"learning_rate": 4.815290241538967e-05,
|
422 |
+
"loss": 0.578,
|
423 |
+
"step": 345
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.37,
|
427 |
+
"learning_rate": 4.809966905124238e-05,
|
428 |
+
"loss": 0.7461,
|
429 |
+
"step": 350
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.38,
|
433 |
+
"learning_rate": 4.804570973474989e-05,
|
434 |
+
"loss": 0.7009,
|
435 |
+
"step": 355
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 0.39,
|
439 |
+
"learning_rate": 4.7991026161689414e-05,
|
440 |
+
"loss": 0.8072,
|
441 |
+
"step": 360
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 0.39,
|
445 |
+
"learning_rate": 4.7935620050599326e-05,
|
446 |
+
"loss": 0.743,
|
447 |
+
"step": 365
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 0.4,
|
451 |
+
"learning_rate": 4.787949314272521e-05,
|
452 |
+
"loss": 0.6266,
|
453 |
+
"step": 370
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.4,
|
457 |
+
"learning_rate": 4.782264720196506e-05,
|
458 |
+
"loss": 0.8777,
|
459 |
+
"step": 375
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.41,
|
463 |
+
"learning_rate": 4.776508401481393e-05,
|
464 |
+
"loss": 0.653,
|
465 |
+
"step": 380
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.41,
|
469 |
+
"learning_rate": 4.7706805390307716e-05,
|
470 |
+
"loss": 0.5811,
|
471 |
+
"step": 385
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.42,
|
475 |
+
"learning_rate": 4.764781315996635e-05,
|
476 |
+
"loss": 0.5695,
|
477 |
+
"step": 390
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 0.42,
|
481 |
+
"learning_rate": 4.75881091777362e-05,
|
482 |
+
"loss": 1.009,
|
483 |
+
"step": 395
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 0.43,
|
487 |
+
"learning_rate": 4.752769531993187e-05,
|
488 |
+
"loss": 0.9361,
|
489 |
+
"step": 400
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.43,
|
493 |
+
"learning_rate": 4.746657348517716e-05,
|
494 |
+
"loss": 0.7177,
|
495 |
+
"step": 405
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.44,
|
499 |
+
"learning_rate": 4.7404745594345455e-05,
|
500 |
+
"loss": 0.783,
|
501 |
+
"step": 410
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.44,
|
505 |
+
"learning_rate": 4.734221359049933e-05,
|
506 |
+
"loss": 0.7872,
|
507 |
+
"step": 415
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.45,
|
511 |
+
"learning_rate": 4.7278979438829476e-05,
|
512 |
+
"loss": 0.9596,
|
513 |
+
"step": 420
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.46,
|
517 |
+
"learning_rate": 4.7215045126592975e-05,
|
518 |
+
"loss": 0.6286,
|
519 |
+
"step": 425
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 0.46,
|
523 |
+
"learning_rate": 4.7150412663050806e-05,
|
524 |
+
"loss": 0.6694,
|
525 |
+
"step": 430
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 0.47,
|
529 |
+
"learning_rate": 4.708508407940474e-05,
|
530 |
+
"loss": 1.1083,
|
531 |
+
"step": 435
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 0.47,
|
535 |
+
"learning_rate": 4.701906142873348e-05,
|
536 |
+
"loss": 0.8941,
|
537 |
+
"step": 440
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 0.48,
|
541 |
+
"learning_rate": 4.695234678592813e-05,
|
542 |
+
"loss": 0.5684,
|
543 |
+
"step": 445
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.48,
|
547 |
+
"learning_rate": 4.688494224762703e-05,
|
548 |
+
"loss": 0.6082,
|
549 |
+
"step": 450
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.49,
|
553 |
+
"learning_rate": 4.68168499321498e-05,
|
554 |
+
"loss": 0.6237,
|
555 |
+
"step": 455
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.49,
|
559 |
+
"learning_rate": 4.674807197943084e-05,
|
560 |
+
"loss": 0.7826,
|
561 |
+
"step": 460
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 0.5,
|
565 |
+
"learning_rate": 4.667861055095204e-05,
|
566 |
+
"loss": 0.8674,
|
567 |
+
"step": 465
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 0.5,
|
571 |
+
"learning_rate": 4.660846782967482e-05,
|
572 |
+
"loss": 0.6158,
|
573 |
+
"step": 470
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 0.51,
|
577 |
+
"learning_rate": 4.6537646019971606e-05,
|
578 |
+
"loss": 0.9251,
|
579 |
+
"step": 475
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.51,
|
583 |
+
"learning_rate": 4.6466147347556464e-05,
|
584 |
+
"loss": 0.3553,
|
585 |
+
"step": 480
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.52,
|
589 |
+
"learning_rate": 4.639397405941523e-05,
|
590 |
+
"loss": 0.6503,
|
591 |
+
"step": 485
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.52,
|
595 |
+
"learning_rate": 4.632112842373487e-05,
|
596 |
+
"loss": 0.6233,
|
597 |
+
"step": 490
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.53,
|
601 |
+
"learning_rate": 4.6247612729832136e-05,
|
602 |
+
"loss": 0.893,
|
603 |
+
"step": 495
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 0.54,
|
607 |
+
"learning_rate": 4.617342928808171e-05,
|
608 |
+
"loss": 0.6042,
|
609 |
+
"step": 500
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.54,
|
613 |
+
"learning_rate": 4.609858042984358e-05,
|
614 |
+
"loss": 0.6552,
|
615 |
+
"step": 505
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.55,
|
619 |
+
"learning_rate": 4.602306850738968e-05,
|
620 |
+
"loss": 0.7058,
|
621 |
+
"step": 510
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 0.55,
|
625 |
+
"learning_rate": 4.5946895893830107e-05,
|
626 |
+
"loss": 0.59,
|
627 |
+
"step": 515
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.56,
|
631 |
+
"learning_rate": 4.587006498303843e-05,
|
632 |
+
"loss": 0.7338,
|
633 |
+
"step": 520
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.56,
|
637 |
+
"learning_rate": 4.5792578189576517e-05,
|
638 |
+
"loss": 0.7929,
|
639 |
+
"step": 525
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.57,
|
643 |
+
"learning_rate": 4.5714437948618624e-05,
|
644 |
+
"loss": 0.5103,
|
645 |
+
"step": 530
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 0.57,
|
649 |
+
"learning_rate": 4.563564671587487e-05,
|
650 |
+
"loss": 0.6799,
|
651 |
+
"step": 535
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 0.58,
|
655 |
+
"learning_rate": 4.555620696751407e-05,
|
656 |
+
"loss": 1.249,
|
657 |
+
"step": 540
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.58,
|
661 |
+
"learning_rate": 4.5476121200085934e-05,
|
662 |
+
"loss": 0.7596,
|
663 |
+
"step": 545
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 0.59,
|
667 |
+
"learning_rate": 4.5395391930442536e-05,
|
668 |
+
"loss": 0.695,
|
669 |
+
"step": 550
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.59,
|
673 |
+
"learning_rate": 4.531402169565933e-05,
|
674 |
+
"loss": 0.7904,
|
675 |
+
"step": 555
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.6,
|
679 |
+
"learning_rate": 4.52320130529553e-05,
|
680 |
+
"loss": 0.5093,
|
681 |
+
"step": 560
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.6,
|
685 |
+
"learning_rate": 4.51493685796127e-05,
|
686 |
+
"loss": 0.5815,
|
687 |
+
"step": 565
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 0.61,
|
691 |
+
"learning_rate": 4.5066090872895944e-05,
|
692 |
+
"loss": 0.7107,
|
693 |
+
"step": 570
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 0.62,
|
697 |
+
"learning_rate": 4.4982182549970105e-05,
|
698 |
+
"loss": 0.8838,
|
699 |
+
"step": 575
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 0.62,
|
703 |
+
"learning_rate": 4.489764624781859e-05,
|
704 |
+
"loss": 0.6607,
|
705 |
+
"step": 580
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 0.63,
|
709 |
+
"learning_rate": 4.481248462316026e-05,
|
710 |
+
"loss": 0.9362,
|
711 |
+
"step": 585
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.63,
|
715 |
+
"learning_rate": 4.472670035236597e-05,
|
716 |
+
"loss": 0.7114,
|
717 |
+
"step": 590
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.64,
|
721 |
+
"learning_rate": 4.4640296131374474e-05,
|
722 |
+
"loss": 0.8569,
|
723 |
+
"step": 595
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.64,
|
727 |
+
"learning_rate": 4.4553274675607636e-05,
|
728 |
+
"loss": 0.8141,
|
729 |
+
"step": 600
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 0.65,
|
733 |
+
"learning_rate": 4.446563871988517e-05,
|
734 |
+
"loss": 0.7217,
|
735 |
+
"step": 605
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"epoch": 0.65,
|
739 |
+
"learning_rate": 4.4377391018338624e-05,
|
740 |
+
"loss": 0.5951,
|
741 |
+
"step": 610
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 0.66,
|
745 |
+
"learning_rate": 4.4288534344324884e-05,
|
746 |
+
"loss": 0.616,
|
747 |
+
"step": 615
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 0.66,
|
751 |
+
"learning_rate": 4.419907149033896e-05,
|
752 |
+
"loss": 0.8424,
|
753 |
+
"step": 620
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 0.67,
|
757 |
+
"learning_rate": 4.410900526792627e-05,
|
758 |
+
"loss": 0.6658,
|
759 |
+
"step": 625
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.67,
|
763 |
+
"learning_rate": 4.401833850759428e-05,
|
764 |
+
"loss": 0.7002,
|
765 |
+
"step": 630
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.68,
|
769 |
+
"learning_rate": 4.392707405872351e-05,
|
770 |
+
"loss": 0.6905,
|
771 |
+
"step": 635
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"epoch": 0.69,
|
775 |
+
"learning_rate": 4.383521478947803e-05,
|
776 |
+
"loss": 0.759,
|
777 |
+
"step": 640
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 0.69,
|
781 |
+
"learning_rate": 4.37427635867153e-05,
|
782 |
+
"loss": 0.6635,
|
783 |
+
"step": 645
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 0.7,
|
787 |
+
"learning_rate": 4.364972335589544e-05,
|
788 |
+
"loss": 0.9038,
|
789 |
+
"step": 650
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.7,
|
793 |
+
"learning_rate": 4.355609702098995e-05,
|
794 |
+
"loss": 0.9281,
|
795 |
+
"step": 655
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.71,
|
799 |
+
"learning_rate": 4.34618875243898e-05,
|
800 |
+
"loss": 0.6037,
|
801 |
+
"step": 660
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.71,
|
805 |
+
"learning_rate": 4.3367097826812935e-05,
|
806 |
+
"loss": 0.7123,
|
807 |
+
"step": 665
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.72,
|
811 |
+
"learning_rate": 4.3271730907211274e-05,
|
812 |
+
"loss": 0.8659,
|
813 |
+
"step": 670
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"epoch": 0.72,
|
817 |
+
"learning_rate": 4.3175789762677055e-05,
|
818 |
+
"loss": 0.885,
|
819 |
+
"step": 675
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 0.73,
|
823 |
+
"learning_rate": 4.3079277408348665e-05,
|
824 |
+
"loss": 0.9043,
|
825 |
+
"step": 680
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 0.73,
|
829 |
+
"learning_rate": 4.298219687731587e-05,
|
830 |
+
"loss": 0.6392,
|
831 |
+
"step": 685
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 0.74,
|
835 |
+
"learning_rate": 4.2884551220524525e-05,
|
836 |
+
"loss": 0.9321,
|
837 |
+
"step": 690
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.74,
|
841 |
+
"learning_rate": 4.278634350668065e-05,
|
842 |
+
"loss": 0.8969,
|
843 |
+
"step": 695
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.75,
|
847 |
+
"learning_rate": 4.2687576822154e-05,
|
848 |
+
"loss": 0.5849,
|
849 |
+
"step": 700
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.75,
|
853 |
+
"learning_rate": 4.2588254270881104e-05,
|
854 |
+
"loss": 0.6908,
|
855 |
+
"step": 705
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 0.76,
|
859 |
+
"learning_rate": 4.248837897426766e-05,
|
860 |
+
"loss": 0.8788,
|
861 |
+
"step": 710
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 0.77,
|
865 |
+
"learning_rate": 4.238795407109052e-05,
|
866 |
+
"loss": 0.7171,
|
867 |
+
"step": 715
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 0.77,
|
871 |
+
"learning_rate": 4.228698271739894e-05,
|
872 |
+
"loss": 0.8489,
|
873 |
+
"step": 720
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.78,
|
877 |
+
"learning_rate": 4.218546808641549e-05,
|
878 |
+
"loss": 0.7057,
|
879 |
+
"step": 725
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.78,
|
883 |
+
"learning_rate": 4.208341336843629e-05,
|
884 |
+
"loss": 0.7711,
|
885 |
+
"step": 730
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.79,
|
889 |
+
"learning_rate": 4.198082177073075e-05,
|
890 |
+
"loss": 0.7608,
|
891 |
+
"step": 735
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.79,
|
895 |
+
"learning_rate": 4.1877696517440755e-05,
|
896 |
+
"loss": 0.6685,
|
897 |
+
"step": 740
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 0.8,
|
901 |
+
"learning_rate": 4.17740408494794e-05,
|
902 |
+
"loss": 1.0127,
|
903 |
+
"step": 745
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 0.8,
|
907 |
+
"learning_rate": 4.1669858024429085e-05,
|
908 |
+
"loss": 1.0633,
|
909 |
+
"step": 750
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 0.81,
|
913 |
+
"learning_rate": 4.156515131643913e-05,
|
914 |
+
"loss": 0.9283,
|
915 |
+
"step": 755
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 0.81,
|
919 |
+
"learning_rate": 4.145992401612293e-05,
|
920 |
+
"loss": 0.8288,
|
921 |
+
"step": 760
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.82,
|
925 |
+
"learning_rate": 4.135417943045451e-05,
|
926 |
+
"loss": 0.6876,
|
927 |
+
"step": 765
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.82,
|
931 |
+
"learning_rate": 4.12479208826646e-05,
|
932 |
+
"loss": 0.5607,
|
933 |
+
"step": 770
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.83,
|
937 |
+
"learning_rate": 4.1141151712136185e-05,
|
938 |
+
"loss": 0.9306,
|
939 |
+
"step": 775
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 0.84,
|
943 |
+
"learning_rate": 4.103387527429957e-05,
|
944 |
+
"loss": 0.8383,
|
945 |
+
"step": 780
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 0.84,
|
949 |
+
"learning_rate": 4.092609494052695e-05,
|
950 |
+
"loss": 0.6689,
|
951 |
+
"step": 785
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"epoch": 0.85,
|
955 |
+
"learning_rate": 4.0817814098026424e-05,
|
956 |
+
"loss": 0.8616,
|
957 |
+
"step": 790
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 0.85,
|
961 |
+
"learning_rate": 4.070903614973555e-05,
|
962 |
+
"loss": 0.9265,
|
963 |
+
"step": 795
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 0.86,
|
967 |
+
"learning_rate": 4.059976451421441e-05,
|
968 |
+
"loss": 0.6806,
|
969 |
+
"step": 800
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.86,
|
973 |
+
"learning_rate": 4.0490002625538195e-05,
|
974 |
+
"loss": 0.7305,
|
975 |
+
"step": 805
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.87,
|
979 |
+
"learning_rate": 4.0379753933189236e-05,
|
980 |
+
"loss": 0.689,
|
981 |
+
"step": 810
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 0.87,
|
985 |
+
"learning_rate": 4.026902190194864e-05,
|
986 |
+
"loss": 0.9028,
|
987 |
+
"step": 815
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"epoch": 0.88,
|
991 |
+
"learning_rate": 4.0157810011787376e-05,
|
992 |
+
"loss": 0.7079,
|
993 |
+
"step": 820
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"epoch": 0.88,
|
997 |
+
"learning_rate": 4.004612175775693e-05,
|
998 |
+
"loss": 0.7397,
|
999 |
+
"step": 825
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 0.89,
|
1003 |
+
"learning_rate": 3.9933960649879434e-05,
|
1004 |
+
"loss": 0.6809,
|
1005 |
+
"step": 830
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 0.89,
|
1009 |
+
"learning_rate": 3.98213302130374e-05,
|
1010 |
+
"loss": 0.7632,
|
1011 |
+
"step": 835
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 0.9,
|
1015 |
+
"learning_rate": 3.970823398686292e-05,
|
1016 |
+
"loss": 0.8833,
|
1017 |
+
"step": 840
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.9,
|
1021 |
+
"learning_rate": 3.959467552562642e-05,
|
1022 |
+
"loss": 1.1581,
|
1023 |
+
"step": 845
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"epoch": 0.91,
|
1027 |
+
"learning_rate": 3.948065839812497e-05,
|
1028 |
+
"loss": 0.8152,
|
1029 |
+
"step": 850
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 0.92,
|
1033 |
+
"learning_rate": 3.936618618757012e-05,
|
1034 |
+
"loss": 0.7035,
|
1035 |
+
"step": 855
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 0.92,
|
1039 |
+
"learning_rate": 3.9251262491475314e-05,
|
1040 |
+
"loss": 0.6862,
|
1041 |
+
"step": 860
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 0.93,
|
1045 |
+
"learning_rate": 3.9135890921542795e-05,
|
1046 |
+
"loss": 0.6714,
|
1047 |
+
"step": 865
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 0.93,
|
1051 |
+
"learning_rate": 3.902007510355014e-05,
|
1052 |
+
"loss": 0.6129,
|
1053 |
+
"step": 870
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 0.94,
|
1057 |
+
"learning_rate": 3.8903818677236256e-05,
|
1058 |
+
"loss": 0.5749,
|
1059 |
+
"step": 875
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.94,
|
1063 |
+
"learning_rate": 3.878712529618707e-05,
|
1064 |
+
"loss": 0.7528,
|
1065 |
+
"step": 880
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 0.95,
|
1069 |
+
"learning_rate": 3.866999862772063e-05,
|
1070 |
+
"loss": 0.8081,
|
1071 |
+
"step": 885
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 0.95,
|
1075 |
+
"learning_rate": 3.8552442352771925e-05,
|
1076 |
+
"loss": 0.2889,
|
1077 |
+
"step": 890
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"epoch": 0.96,
|
1081 |
+
"learning_rate": 3.8434460165777145e-05,
|
1082 |
+
"loss": 0.5895,
|
1083 |
+
"step": 895
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 0.96,
|
1087 |
+
"learning_rate": 3.831605577455761e-05,
|
1088 |
+
"loss": 0.7995,
|
1089 |
+
"step": 900
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 0.97,
|
1093 |
+
"learning_rate": 3.819723290020323e-05,
|
1094 |
+
"loss": 0.8598,
|
1095 |
+
"step": 905
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 0.97,
|
1099 |
+
"learning_rate": 3.807799527695557e-05,
|
1100 |
+
"loss": 0.7677,
|
1101 |
+
"step": 910
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.98,
|
1105 |
+
"learning_rate": 3.79583466520905e-05,
|
1106 |
+
"loss": 0.6112,
|
1107 |
+
"step": 915
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"epoch": 0.99,
|
1111 |
+
"learning_rate": 3.78382907858004e-05,
|
1112 |
+
"loss": 0.701,
|
1113 |
+
"step": 920
|
1114 |
+
},
|
1115 |
+
{
|
1116 |
+
"epoch": 0.99,
|
1117 |
+
"learning_rate": 3.7717831451076024e-05,
|
1118 |
+
"loss": 0.812,
|
1119 |
+
"step": 925
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 1.0,
|
1123 |
+
"learning_rate": 3.7596972433587915e-05,
|
1124 |
+
"loss": 0.8178,
|
1125 |
+
"step": 930
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 1.0,
|
1129 |
+
"learning_rate": 3.7500000000000003e-05,
|
1130 |
+
"loss": 0.8653,
|
1131 |
+
"step": 935
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"epoch": 1.01,
|
1135 |
+
"learning_rate": 3.737843113344485e-05,
|
1136 |
+
"loss": 0.4592,
|
1137 |
+
"step": 940
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 1.01,
|
1141 |
+
"learning_rate": 3.72564732504457e-05,
|
1142 |
+
"loss": 0.1997,
|
1143 |
+
"step": 945
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 1.02,
|
1147 |
+
"learning_rate": 3.713413018376795e-05,
|
1148 |
+
"loss": 0.4832,
|
1149 |
+
"step": 950
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 1.02,
|
1153 |
+
"learning_rate": 3.701140577828207e-05,
|
1154 |
+
"loss": 0.5203,
|
1155 |
+
"step": 955
|
1156 |
+
},
|
1157 |
+
{
|
1158 |
+
"epoch": 1.03,
|
1159 |
+
"learning_rate": 3.68883038908429e-05,
|
1160 |
+
"loss": 0.3606,
|
1161 |
+
"step": 960
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 1.03,
|
1165 |
+
"learning_rate": 3.6764828390168374e-05,
|
1166 |
+
"loss": 0.4231,
|
1167 |
+
"step": 965
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 1.04,
|
1171 |
+
"learning_rate": 3.664098315671793e-05,
|
1172 |
+
"loss": 0.4086,
|
1173 |
+
"step": 970
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 1.04,
|
1177 |
+
"learning_rate": 3.651677208257063e-05,
|
1178 |
+
"loss": 0.3105,
|
1179 |
+
"step": 975
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 1.05,
|
1183 |
+
"learning_rate": 3.639219907130276e-05,
|
1184 |
+
"loss": 0.3642,
|
1185 |
+
"step": 980
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 1.05,
|
1189 |
+
"learning_rate": 3.626726803786519e-05,
|
1190 |
+
"loss": 0.4502,
|
1191 |
+
"step": 985
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"epoch": 1.06,
|
1195 |
+
"learning_rate": 3.6141982908460364e-05,
|
1196 |
+
"loss": 0.4569,
|
1197 |
+
"step": 990
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"epoch": 1.07,
|
1201 |
+
"learning_rate": 3.601634762041887e-05,
|
1202 |
+
"loss": 0.45,
|
1203 |
+
"step": 995
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"epoch": 1.07,
|
1207 |
+
"learning_rate": 3.5890366122075694e-05,
|
1208 |
+
"loss": 0.3306,
|
1209 |
+
"step": 1000
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 1.08,
|
1213 |
+
"learning_rate": 3.576404237264621e-05,
|
1214 |
+
"loss": 0.3047,
|
1215 |
+
"step": 1005
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"epoch": 1.08,
|
1219 |
+
"learning_rate": 3.5637380342101656e-05,
|
1220 |
+
"loss": 0.3147,
|
1221 |
+
"step": 1010
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 1.09,
|
1225 |
+
"learning_rate": 3.5510384011044436e-05,
|
1226 |
+
"loss": 0.2347,
|
1227 |
+
"step": 1015
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 1.09,
|
1231 |
+
"learning_rate": 3.5383057370583005e-05,
|
1232 |
+
"loss": 0.2454,
|
1233 |
+
"step": 1020
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"epoch": 1.1,
|
1237 |
+
"learning_rate": 3.525540442220644e-05,
|
1238 |
+
"loss": 0.4466,
|
1239 |
+
"step": 1025
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 1.1,
|
1243 |
+
"learning_rate": 3.512742917765866e-05,
|
1244 |
+
"loss": 0.3689,
|
1245 |
+
"step": 1030
|
1246 |
+
},
|
1247 |
+
{
|
1248 |
+
"epoch": 1.11,
|
1249 |
+
"learning_rate": 3.499913565881241e-05,
|
1250 |
+
"loss": 0.4169,
|
1251 |
+
"step": 1035
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 1.11,
|
1255 |
+
"learning_rate": 3.487052789754279e-05,
|
1256 |
+
"loss": 0.4434,
|
1257 |
+
"step": 1040
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"epoch": 1.12,
|
1261 |
+
"learning_rate": 3.4741609935600614e-05,
|
1262 |
+
"loss": 0.2953,
|
1263 |
+
"step": 1045
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 1.12,
|
1267 |
+
"learning_rate": 3.4612385824485337e-05,
|
1268 |
+
"loss": 0.3711,
|
1269 |
+
"step": 1050
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 1.13,
|
1273 |
+
"learning_rate": 3.4482859625317766e-05,
|
1274 |
+
"loss": 0.2047,
|
1275 |
+
"step": 1055
|
1276 |
+
},
|
1277 |
+
{
|
1278 |
+
"epoch": 1.13,
|
1279 |
+
"learning_rate": 3.435303540871242e-05,
|
1280 |
+
"loss": 0.204,
|
1281 |
+
"step": 1060
|
1282 |
+
},
|
1283 |
+
{
|
1284 |
+
"epoch": 1.14,
|
1285 |
+
"learning_rate": 3.422291725464959e-05,
|
1286 |
+
"loss": 0.3836,
|
1287 |
+
"step": 1065
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"epoch": 1.15,
|
1291 |
+
"learning_rate": 3.409250925234712e-05,
|
1292 |
+
"loss": 0.2568,
|
1293 |
+
"step": 1070
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 1.15,
|
1297 |
+
"learning_rate": 3.396181550013192e-05,
|
1298 |
+
"loss": 0.4014,
|
1299 |
+
"step": 1075
|
1300 |
+
},
|
1301 |
+
{
|
1302 |
+
"epoch": 1.16,
|
1303 |
+
"learning_rate": 3.383084010531114e-05,
|
1304 |
+
"loss": 0.4951,
|
1305 |
+
"step": 1080
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 1.16,
|
1309 |
+
"learning_rate": 3.3699587184043105e-05,
|
1310 |
+
"loss": 0.34,
|
1311 |
+
"step": 1085
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 1.17,
|
1315 |
+
"learning_rate": 3.356806086120795e-05,
|
1316 |
+
"loss": 0.3992,
|
1317 |
+
"step": 1090
|
1318 |
+
},
|
1319 |
+
{
|
1320 |
+
"epoch": 1.17,
|
1321 |
+
"learning_rate": 3.343626527027798e-05,
|
1322 |
+
"loss": 0.3924,
|
1323 |
+
"step": 1095
|
1324 |
+
},
|
1325 |
+
{
|
1326 |
+
"epoch": 1.18,
|
1327 |
+
"learning_rate": 3.3304204553187815e-05,
|
1328 |
+
"loss": 0.1872,
|
1329 |
+
"step": 1100
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 1.18,
|
1333 |
+
"learning_rate": 3.317188286020413e-05,
|
1334 |
+
"loss": 0.3238,
|
1335 |
+
"step": 1105
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 1.19,
|
1339 |
+
"learning_rate": 3.303930434979531e-05,
|
1340 |
+
"loss": 0.2943,
|
1341 |
+
"step": 1110
|
1342 |
+
},
|
1343 |
+
{
|
1344 |
+
"epoch": 1.19,
|
1345 |
+
"learning_rate": 3.290647318850074e-05,
|
1346 |
+
"loss": 0.3754,
|
1347 |
+
"step": 1115
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 1.2,
|
1351 |
+
"learning_rate": 3.277339355079983e-05,
|
1352 |
+
"loss": 0.3159,
|
1353 |
+
"step": 1120
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 1.2,
|
1357 |
+
"learning_rate": 3.2640069618980854e-05,
|
1358 |
+
"loss": 0.3763,
|
1359 |
+
"step": 1125
|
1360 |
+
},
|
1361 |
+
{
|
1362 |
+
"epoch": 1.21,
|
1363 |
+
"learning_rate": 3.2506505583009516e-05,
|
1364 |
+
"loss": 0.3898,
|
1365 |
+
"step": 1130
|
1366 |
+
},
|
1367 |
+
{
|
1368 |
+
"epoch": 1.22,
|
1369 |
+
"learning_rate": 3.2372705640397264e-05,
|
1370 |
+
"loss": 0.3006,
|
1371 |
+
"step": 1135
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"epoch": 1.22,
|
1375 |
+
"learning_rate": 3.223867399606935e-05,
|
1376 |
+
"loss": 0.3968,
|
1377 |
+
"step": 1140
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 1.23,
|
1381 |
+
"learning_rate": 3.210441486223274e-05,
|
1382 |
+
"loss": 0.3107,
|
1383 |
+
"step": 1145
|
1384 |
+
},
|
1385 |
+
{
|
1386 |
+
"epoch": 1.23,
|
1387 |
+
"learning_rate": 3.196993245824368e-05,
|
1388 |
+
"loss": 0.4036,
|
1389 |
+
"step": 1150
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 1.24,
|
1393 |
+
"learning_rate": 3.183523101047513e-05,
|
1394 |
+
"loss": 0.3168,
|
1395 |
+
"step": 1155
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 1.24,
|
1399 |
+
"learning_rate": 3.170031475218393e-05,
|
1400 |
+
"loss": 0.2956,
|
1401 |
+
"step": 1160
|
1402 |
+
},
|
1403 |
+
{
|
1404 |
+
"epoch": 1.25,
|
1405 |
+
"learning_rate": 3.1565187923377746e-05,
|
1406 |
+
"loss": 0.3462,
|
1407 |
+
"step": 1165
|
1408 |
+
},
|
1409 |
+
{
|
1410 |
+
"epoch": 1.25,
|
1411 |
+
"learning_rate": 3.142985477068185e-05,
|
1412 |
+
"loss": 0.3532,
|
1413 |
+
"step": 1170
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"epoch": 1.26,
|
1417 |
+
"learning_rate": 3.129431954720565e-05,
|
1418 |
+
"loss": 0.3928,
|
1419 |
+
"step": 1175
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 1.26,
|
1423 |
+
"learning_rate": 3.1158586512409e-05,
|
1424 |
+
"loss": 0.4801,
|
1425 |
+
"step": 1180
|
1426 |
+
},
|
1427 |
+
{
|
1428 |
+
"epoch": 1.27,
|
1429 |
+
"learning_rate": 3.1022659931968395e-05,
|
1430 |
+
"loss": 0.4299,
|
1431 |
+
"step": 1185
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 1.27,
|
1435 |
+
"learning_rate": 3.0886544077642865e-05,
|
1436 |
+
"loss": 0.4258,
|
1437 |
+
"step": 1190
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 1.28,
|
1441 |
+
"learning_rate": 3.075024322713972e-05,
|
1442 |
+
"loss": 0.5112,
|
1443 |
+
"step": 1195
|
1444 |
+
},
|
1445 |
+
{
|
1446 |
+
"epoch": 1.28,
|
1447 |
+
"learning_rate": 3.0613761663980184e-05,
|
1448 |
+
"loss": 0.3401,
|
1449 |
+
"step": 1200
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 1.29,
|
1453 |
+
"learning_rate": 3.0477103677364694e-05,
|
1454 |
+
"loss": 0.4322,
|
1455 |
+
"step": 1205
|
1456 |
+
},
|
1457 |
+
{
|
1458 |
+
"epoch": 1.3,
|
1459 |
+
"learning_rate": 3.0340273562038146e-05,
|
1460 |
+
"loss": 0.4011,
|
1461 |
+
"step": 1210
|
1462 |
+
},
|
1463 |
+
{
|
1464 |
+
"epoch": 1.3,
|
1465 |
+
"learning_rate": 3.0203275618154935e-05,
|
1466 |
+
"loss": 0.3879,
|
1467 |
+
"step": 1215
|
1468 |
+
},
|
1469 |
+
{
|
1470 |
+
"epoch": 1.31,
|
1471 |
+
"learning_rate": 3.0066114151143775e-05,
|
1472 |
+
"loss": 0.3586,
|
1473 |
+
"step": 1220
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 1.31,
|
1477 |
+
"learning_rate": 2.9928793471572432e-05,
|
1478 |
+
"loss": 0.3994,
|
1479 |
+
"step": 1225
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 1.32,
|
1483 |
+
"learning_rate": 2.9791317895012234e-05,
|
1484 |
+
"loss": 0.2322,
|
1485 |
+
"step": 1230
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"epoch": 1.32,
|
1489 |
+
"learning_rate": 2.965369174190243e-05,
|
1490 |
+
"loss": 0.3513,
|
1491 |
+
"step": 1235
|
1492 |
+
},
|
1493 |
+
{
|
1494 |
+
"epoch": 1.33,
|
1495 |
+
"learning_rate": 2.9515919337414472e-05,
|
1496 |
+
"loss": 0.307,
|
1497 |
+
"step": 1240
|
1498 |
+
},
|
1499 |
+
{
|
1500 |
+
"epoch": 1.33,
|
1501 |
+
"learning_rate": 2.937800501131601e-05,
|
1502 |
+
"loss": 0.3364,
|
1503 |
+
"step": 1245
|
1504 |
+
},
|
1505 |
+
{
|
1506 |
+
"epoch": 1.34,
|
1507 |
+
"learning_rate": 2.9239953097834876e-05,
|
1508 |
+
"loss": 0.3243,
|
1509 |
+
"step": 1250
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"epoch": 1.34,
|
1513 |
+
"learning_rate": 2.910176793552287e-05,
|
1514 |
+
"loss": 0.4326,
|
1515 |
+
"step": 1255
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"epoch": 1.35,
|
1519 |
+
"learning_rate": 2.8963453867119354e-05,
|
1520 |
+
"loss": 0.3193,
|
1521 |
+
"step": 1260
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 1.35,
|
1525 |
+
"learning_rate": 2.8825015239414856e-05,
|
1526 |
+
"loss": 0.3131,
|
1527 |
+
"step": 1265
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 1.36,
|
1531 |
+
"learning_rate": 2.8686456403114415e-05,
|
1532 |
+
"loss": 0.3406,
|
1533 |
+
"step": 1270
|
1534 |
+
},
|
1535 |
+
{
|
1536 |
+
"epoch": 1.37,
|
1537 |
+
"learning_rate": 2.854778171270085e-05,
|
1538 |
+
"loss": 0.3749,
|
1539 |
+
"step": 1275
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 1.37,
|
1543 |
+
"learning_rate": 2.8408995526297926e-05,
|
1544 |
+
"loss": 0.334,
|
1545 |
+
"step": 1280
|
1546 |
+
},
|
1547 |
+
{
|
1548 |
+
"epoch": 1.38,
|
1549 |
+
"learning_rate": 2.8270102205533406e-05,
|
1550 |
+
"loss": 0.3929,
|
1551 |
+
"step": 1285
|
1552 |
+
},
|
1553 |
+
{
|
1554 |
+
"epoch": 1.38,
|
1555 |
+
"learning_rate": 2.8131106115401933e-05,
|
1556 |
+
"loss": 0.3972,
|
1557 |
+
"step": 1290
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 1.39,
|
1561 |
+
"learning_rate": 2.7992011624127888e-05,
|
1562 |
+
"loss": 0.2296,
|
1563 |
+
"step": 1295
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 1.39,
|
1567 |
+
"learning_rate": 2.7852823103028116e-05,
|
1568 |
+
"loss": 0.3938,
|
1569 |
+
"step": 1300
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 1.4,
|
1573 |
+
"learning_rate": 2.771354492637451e-05,
|
1574 |
+
"loss": 0.3469,
|
1575 |
+
"step": 1305
|
1576 |
+
},
|
1577 |
+
{
|
1578 |
+
"epoch": 1.4,
|
1579 |
+
"learning_rate": 2.7574181471256578e-05,
|
1580 |
+
"loss": 0.3049,
|
1581 |
+
"step": 1310
|
1582 |
+
},
|
1583 |
+
{
|
1584 |
+
"epoch": 1.41,
|
1585 |
+
"learning_rate": 2.743473711744387e-05,
|
1586 |
+
"loss": 0.3872,
|
1587 |
+
"step": 1315
|
1588 |
+
},
|
1589 |
+
{
|
1590 |
+
"epoch": 1.41,
|
1591 |
+
"learning_rate": 2.7295216247248327e-05,
|
1592 |
+
"loss": 0.2893,
|
1593 |
+
"step": 1320
|
1594 |
+
},
|
1595 |
+
{
|
1596 |
+
"epoch": 1.42,
|
1597 |
+
"learning_rate": 2.7155623245386584e-05,
|
1598 |
+
"loss": 0.3781,
|
1599 |
+
"step": 1325
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 1.42,
|
1603 |
+
"learning_rate": 2.701596249884214e-05,
|
1604 |
+
"loss": 0.3755,
|
1605 |
+
"step": 1330
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 1.43,
|
1609 |
+
"learning_rate": 2.6876238396727504e-05,
|
1610 |
+
"loss": 0.2317,
|
1611 |
+
"step": 1335
|
1612 |
+
},
|
1613 |
+
{
|
1614 |
+
"epoch": 1.43,
|
1615 |
+
"learning_rate": 2.6736455330146278e-05,
|
1616 |
+
"loss": 0.5266,
|
1617 |
+
"step": 1340
|
1618 |
+
},
|
1619 |
+
{
|
1620 |
+
"epoch": 1.44,
|
1621 |
+
"learning_rate": 2.6596617692055105e-05,
|
1622 |
+
"loss": 0.367,
|
1623 |
+
"step": 1345
|
1624 |
+
},
|
1625 |
+
{
|
1626 |
+
"epoch": 1.45,
|
1627 |
+
"learning_rate": 2.6456729877125663e-05,
|
1628 |
+
"loss": 0.3744,
|
1629 |
+
"step": 1350
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 1.45,
|
1633 |
+
"learning_rate": 2.631679628160655e-05,
|
1634 |
+
"loss": 0.4376,
|
1635 |
+
"step": 1355
|
1636 |
+
},
|
1637 |
+
{
|
1638 |
+
"epoch": 1.46,
|
1639 |
+
"learning_rate": 2.6176821303185066e-05,
|
1640 |
+
"loss": 0.4219,
|
1641 |
+
"step": 1360
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 1.46,
|
1645 |
+
"learning_rate": 2.6036809340849106e-05,
|
1646 |
+
"loss": 0.2541,
|
1647 |
+
"step": 1365
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 1.47,
|
1651 |
+
"learning_rate": 2.5896764794748813e-05,
|
1652 |
+
"loss": 0.3705,
|
1653 |
+
"step": 1370
|
1654 |
+
},
|
1655 |
+
{
|
1656 |
+
"epoch": 1.47,
|
1657 |
+
"learning_rate": 2.5756692066058346e-05,
|
1658 |
+
"loss": 0.4607,
|
1659 |
+
"step": 1375
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"epoch": 1.48,
|
1663 |
+
"learning_rate": 2.5616595556837573e-05,
|
1664 |
+
"loss": 0.5631,
|
1665 |
+
"step": 1380
|
1666 |
+
},
|
1667 |
+
{
|
1668 |
+
"epoch": 1.48,
|
1669 |
+
"learning_rate": 2.547647966989371e-05,
|
1670 |
+
"loss": 0.5518,
|
1671 |
+
"step": 1385
|
1672 |
+
},
|
1673 |
+
{
|
1674 |
+
"epoch": 1.49,
|
1675 |
+
"learning_rate": 2.533634880864293e-05,
|
1676 |
+
"loss": 0.3245,
|
1677 |
+
"step": 1390
|
1678 |
+
},
|
1679 |
+
{
|
1680 |
+
"epoch": 1.49,
|
1681 |
+
"learning_rate": 2.519620737697204e-05,
|
1682 |
+
"loss": 0.3764,
|
1683 |
+
"step": 1395
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 1.5,
|
1687 |
+
"learning_rate": 2.5056059779100017e-05,
|
1688 |
+
"loss": 0.3896,
|
1689 |
+
"step": 1400
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 1.5,
|
1693 |
+
"learning_rate": 2.4915910419439627e-05,
|
1694 |
+
"loss": 0.2681,
|
1695 |
+
"step": 1405
|
1696 |
+
},
|
1697 |
+
{
|
1698 |
+
"epoch": 1.51,
|
1699 |
+
"learning_rate": 2.4775763702459026e-05,
|
1700 |
+
"loss": 0.3076,
|
1701 |
+
"step": 1410
|
1702 |
+
},
|
1703 |
+
{
|
1704 |
+
"epoch": 1.51,
|
1705 |
+
"learning_rate": 2.463562403254327e-05,
|
1706 |
+
"loss": 0.4762,
|
1707 |
+
"step": 1415
|
1708 |
+
},
|
1709 |
+
{
|
1710 |
+
"epoch": 1.52,
|
1711 |
+
"learning_rate": 2.4495495813855994e-05,
|
1712 |
+
"loss": 0.3402,
|
1713 |
+
"step": 1420
|
1714 |
+
},
|
1715 |
+
{
|
1716 |
+
"epoch": 1.53,
|
1717 |
+
"learning_rate": 2.4355383450200957e-05,
|
1718 |
+
"loss": 0.3426,
|
1719 |
+
"step": 1425
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"epoch": 1.53,
|
1723 |
+
"learning_rate": 2.421529134488359e-05,
|
1724 |
+
"loss": 0.323,
|
1725 |
+
"step": 1430
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"epoch": 1.54,
|
1729 |
+
"learning_rate": 2.407522390057272e-05,
|
1730 |
+
"loss": 0.2517,
|
1731 |
+
"step": 1435
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 1.54,
|
1735 |
+
"learning_rate": 2.3935185519162133e-05,
|
1736 |
+
"loss": 0.2985,
|
1737 |
+
"step": 1440
|
1738 |
+
},
|
1739 |
+
{
|
1740 |
+
"epoch": 1.55,
|
1741 |
+
"learning_rate": 2.3795180601632257e-05,
|
1742 |
+
"loss": 0.377,
|
1743 |
+
"step": 1445
|
1744 |
+
},
|
1745 |
+
{
|
1746 |
+
"epoch": 1.55,
|
1747 |
+
"learning_rate": 2.3655213547911846e-05,
|
1748 |
+
"loss": 0.3976,
|
1749 |
+
"step": 1450
|
1750 |
+
},
|
1751 |
+
{
|
1752 |
+
"epoch": 1.56,
|
1753 |
+
"learning_rate": 2.3515288756739732e-05,
|
1754 |
+
"loss": 0.5024,
|
1755 |
+
"step": 1455
|
1756 |
+
},
|
1757 |
+
{
|
1758 |
+
"epoch": 1.56,
|
1759 |
+
"learning_rate": 2.3375410625526527e-05,
|
1760 |
+
"loss": 0.3413,
|
1761 |
+
"step": 1460
|
1762 |
+
},
|
1763 |
+
{
|
1764 |
+
"epoch": 1.57,
|
1765 |
+
"learning_rate": 2.3235583550216507e-05,
|
1766 |
+
"loss": 0.2962,
|
1767 |
+
"step": 1465
|
1768 |
+
},
|
1769 |
+
{
|
1770 |
+
"epoch": 1.57,
|
1771 |
+
"learning_rate": 2.309581192514937e-05,
|
1772 |
+
"loss": 0.3109,
|
1773 |
+
"step": 1470
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 1.58,
|
1777 |
+
"learning_rate": 2.295610014292221e-05,
|
1778 |
+
"loss": 0.313,
|
1779 |
+
"step": 1475
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 1.58,
|
1783 |
+
"learning_rate": 2.2816452594251454e-05,
|
1784 |
+
"loss": 0.4659,
|
1785 |
+
"step": 1480
|
1786 |
+
},
|
1787 |
+
{
|
1788 |
+
"epoch": 1.59,
|
1789 |
+
"learning_rate": 2.2676873667834822e-05,
|
1790 |
+
"loss": 0.3142,
|
1791 |
+
"step": 1485
|
1792 |
+
},
|
1793 |
+
{
|
1794 |
+
"epoch": 1.6,
|
1795 |
+
"learning_rate": 2.253736775021349e-05,
|
1796 |
+
"loss": 0.4029,
|
1797 |
+
"step": 1490
|
1798 |
+
},
|
1799 |
+
{
|
1800 |
+
"epoch": 1.6,
|
1801 |
+
"learning_rate": 2.239793922563415e-05,
|
1802 |
+
"loss": 0.4598,
|
1803 |
+
"step": 1495
|
1804 |
+
},
|
1805 |
+
{
|
1806 |
+
"epoch": 1.61,
|
1807 |
+
"learning_rate": 2.22585924759113e-05,
|
1808 |
+
"loss": 0.3665,
|
1809 |
+
"step": 1500
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 1.61,
|
1813 |
+
"learning_rate": 2.2119331880289482e-05,
|
1814 |
+
"loss": 0.3814,
|
1815 |
+
"step": 1505
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 1.62,
|
1819 |
+
"learning_rate": 2.1980161815305685e-05,
|
1820 |
+
"loss": 0.3147,
|
1821 |
+
"step": 1510
|
1822 |
+
},
|
1823 |
+
{
|
1824 |
+
"epoch": 1.62,
|
1825 |
+
"learning_rate": 2.1841086654651787e-05,
|
1826 |
+
"loss": 0.4053,
|
1827 |
+
"step": 1515
|
1828 |
+
},
|
1829 |
+
{
|
1830 |
+
"epoch": 1.63,
|
1831 |
+
"learning_rate": 2.1702110769037138e-05,
|
1832 |
+
"loss": 0.3571,
|
1833 |
+
"step": 1520
|
1834 |
+
},
|
1835 |
+
{
|
1836 |
+
"epoch": 1.63,
|
1837 |
+
"learning_rate": 2.1563238526051128e-05,
|
1838 |
+
"loss": 0.4268,
|
1839 |
+
"step": 1525
|
1840 |
+
},
|
1841 |
+
{
|
1842 |
+
"epoch": 1.64,
|
1843 |
+
"learning_rate": 2.1424474290026002e-05,
|
1844 |
+
"loss": 0.2449,
|
1845 |
+
"step": 1530
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"epoch": 1.64,
|
1849 |
+
"learning_rate": 2.128582242189971e-05,
|
1850 |
+
"loss": 0.3293,
|
1851 |
+
"step": 1535
|
1852 |
+
},
|
1853 |
+
{
|
1854 |
+
"epoch": 1.65,
|
1855 |
+
"learning_rate": 2.114728727907875e-05,
|
1856 |
+
"loss": 0.3671,
|
1857 |
+
"step": 1540
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 1.65,
|
1861 |
+
"learning_rate": 2.1008873215301346e-05,
|
1862 |
+
"loss": 0.3639,
|
1863 |
+
"step": 1545
|
1864 |
+
},
|
1865 |
+
{
|
1866 |
+
"epoch": 1.66,
|
1867 |
+
"learning_rate": 2.0870584580500555e-05,
|
1868 |
+
"loss": 0.328,
|
1869 |
+
"step": 1550
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 1.66,
|
1873 |
+
"learning_rate": 2.0732425720667605e-05,
|
1874 |
+
"loss": 0.3223,
|
1875 |
+
"step": 1555
|
1876 |
+
},
|
1877 |
+
{
|
1878 |
+
"epoch": 1.67,
|
1879 |
+
"learning_rate": 2.0594400977715268e-05,
|
1880 |
+
"loss": 0.4182,
|
1881 |
+
"step": 1560
|
1882 |
+
},
|
1883 |
+
{
|
1884 |
+
"epoch": 1.68,
|
1885 |
+
"learning_rate": 2.045651468934145e-05,
|
1886 |
+
"loss": 0.4449,
|
1887 |
+
"step": 1565
|
1888 |
+
},
|
1889 |
+
{
|
1890 |
+
"epoch": 1.68,
|
1891 |
+
"learning_rate": 2.0318771188892823e-05,
|
1892 |
+
"loss": 0.368,
|
1893 |
+
"step": 1570
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"epoch": 1.69,
|
1897 |
+
"learning_rate": 2.018117480522871e-05,
|
1898 |
+
"loss": 0.237,
|
1899 |
+
"step": 1575
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 1.69,
|
1903 |
+
"learning_rate": 2.0043729862584952e-05,
|
1904 |
+
"loss": 0.2892,
|
1905 |
+
"step": 1580
|
1906 |
+
},
|
1907 |
+
{
|
1908 |
+
"epoch": 1.7,
|
1909 |
+
"learning_rate": 1.99064406804381e-05,
|
1910 |
+
"loss": 0.3522,
|
1911 |
+
"step": 1585
|
1912 |
+
},
|
1913 |
+
{
|
1914 |
+
"epoch": 1.7,
|
1915 |
+
"learning_rate": 1.9769311573369613e-05,
|
1916 |
+
"loss": 0.4601,
|
1917 |
+
"step": 1590
|
1918 |
+
},
|
1919 |
+
{
|
1920 |
+
"epoch": 1.71,
|
1921 |
+
"learning_rate": 1.9632346850930265e-05,
|
1922 |
+
"loss": 0.3318,
|
1923 |
+
"step": 1595
|
1924 |
+
},
|
1925 |
+
{
|
1926 |
+
"epoch": 1.71,
|
1927 |
+
"learning_rate": 1.9495550817504742e-05,
|
1928 |
+
"loss": 0.3333,
|
1929 |
+
"step": 1600
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"epoch": 1.72,
|
1933 |
+
"learning_rate": 1.935892777217633e-05,
|
1934 |
+
"loss": 0.3585,
|
1935 |
+
"step": 1605
|
1936 |
+
},
|
1937 |
+
{
|
1938 |
+
"epoch": 1.72,
|
1939 |
+
"learning_rate": 1.922248200859183e-05,
|
1940 |
+
"loss": 0.2718,
|
1941 |
+
"step": 1610
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 1.73,
|
1945 |
+
"learning_rate": 1.908621781482662e-05,
|
1946 |
+
"loss": 0.2824,
|
1947 |
+
"step": 1615
|
1948 |
+
},
|
1949 |
+
{
|
1950 |
+
"epoch": 1.73,
|
1951 |
+
"learning_rate": 1.89501394732499e-05,
|
1952 |
+
"loss": 0.2374,
|
1953 |
+
"step": 1620
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"epoch": 1.74,
|
1957 |
+
"learning_rate": 1.8814251260390067e-05,
|
1958 |
+
"loss": 0.3704,
|
1959 |
+
"step": 1625
|
1960 |
+
},
|
1961 |
+
{
|
1962 |
+
"epoch": 1.75,
|
1963 |
+
"learning_rate": 1.8678557446800403e-05,
|
1964 |
+
"loss": 0.3356,
|
1965 |
+
"step": 1630
|
1966 |
+
},
|
1967 |
+
{
|
1968 |
+
"epoch": 1.75,
|
1969 |
+
"learning_rate": 1.854306229692476e-05,
|
1970 |
+
"loss": 0.295,
|
1971 |
+
"step": 1635
|
1972 |
+
},
|
1973 |
+
{
|
1974 |
+
"epoch": 1.76,
|
1975 |
+
"learning_rate": 1.8407770068963615e-05,
|
1976 |
+
"loss": 0.3668,
|
1977 |
+
"step": 1640
|
1978 |
+
},
|
1979 |
+
{
|
1980 |
+
"epoch": 1.76,
|
1981 |
+
"learning_rate": 1.8272685014740258e-05,
|
1982 |
+
"loss": 0.3668,
|
1983 |
+
"step": 1645
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 1.77,
|
1987 |
+
"learning_rate": 1.8137811379567076e-05,
|
1988 |
+
"loss": 0.2927,
|
1989 |
+
"step": 1650
|
1990 |
+
},
|
1991 |
+
{
|
1992 |
+
"epoch": 1.77,
|
1993 |
+
"learning_rate": 1.8003153402112248e-05,
|
1994 |
+
"loss": 0.3767,
|
1995 |
+
"step": 1655
|
1996 |
+
},
|
1997 |
+
{
|
1998 |
+
"epoch": 1.78,
|
1999 |
+
"learning_rate": 1.7868715314266464e-05,
|
2000 |
+
"loss": 0.3051,
|
2001 |
+
"step": 1660
|
2002 |
+
},
|
2003 |
+
{
|
2004 |
+
"epoch": 1.78,
|
2005 |
+
"learning_rate": 1.773450134100997e-05,
|
2006 |
+
"loss": 0.2894,
|
2007 |
+
"step": 1665
|
2008 |
+
},
|
2009 |
+
{
|
2010 |
+
"epoch": 1.79,
|
2011 |
+
"learning_rate": 1.760051570027974e-05,
|
2012 |
+
"loss": 0.329,
|
2013 |
+
"step": 1670
|
2014 |
+
},
|
2015 |
+
{
|
2016 |
+
"epoch": 1.79,
|
2017 |
+
"learning_rate": 1.746676260283699e-05,
|
2018 |
+
"loss": 0.3993,
|
2019 |
+
"step": 1675
|
2020 |
+
},
|
2021 |
+
{
|
2022 |
+
"epoch": 1.8,
|
2023 |
+
"learning_rate": 1.7333246252134767e-05,
|
2024 |
+
"loss": 0.2806,
|
2025 |
+
"step": 1680
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 1.8,
|
2029 |
+
"learning_rate": 1.7199970844185943e-05,
|
2030 |
+
"loss": 0.359,
|
2031 |
+
"step": 1685
|
2032 |
+
},
|
2033 |
+
{
|
2034 |
+
"epoch": 1.81,
|
2035 |
+
"learning_rate": 1.706694056743122e-05,
|
2036 |
+
"loss": 0.2649,
|
2037 |
+
"step": 1690
|
2038 |
+
},
|
2039 |
+
{
|
2040 |
+
"epoch": 1.81,
|
2041 |
+
"learning_rate": 1.693415960260764e-05,
|
2042 |
+
"loss": 0.3227,
|
2043 |
+
"step": 1695
|
2044 |
+
},
|
2045 |
+
{
|
2046 |
+
"epoch": 1.82,
|
2047 |
+
"learning_rate": 1.6801632122617095e-05,
|
2048 |
+
"loss": 0.2917,
|
2049 |
+
"step": 1700
|
2050 |
+
},
|
2051 |
+
{
|
2052 |
+
"epoch": 1.83,
|
2053 |
+
"learning_rate": 1.6669362292395214e-05,
|
2054 |
+
"loss": 0.4163,
|
2055 |
+
"step": 1705
|
2056 |
+
},
|
2057 |
+
{
|
2058 |
+
"epoch": 1.83,
|
2059 |
+
"learning_rate": 1.6537354268780498e-05,
|
2060 |
+
"loss": 0.4411,
|
2061 |
+
"step": 1710
|
2062 |
+
},
|
2063 |
+
{
|
2064 |
+
"epoch": 1.84,
|
2065 |
+
"learning_rate": 1.6405612200383645e-05,
|
2066 |
+
"loss": 0.2494,
|
2067 |
+
"step": 1715
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 1.84,
|
2071 |
+
"learning_rate": 1.6274140227457213e-05,
|
2072 |
+
"loss": 0.5221,
|
2073 |
+
"step": 1720
|
2074 |
+
},
|
2075 |
+
{
|
2076 |
+
"epoch": 1.85,
|
2077 |
+
"learning_rate": 1.6142942481765448e-05,
|
2078 |
+
"loss": 0.3146,
|
2079 |
+
"step": 1725
|
2080 |
+
},
|
2081 |
+
{
|
2082 |
+
"epoch": 1.85,
|
2083 |
+
"learning_rate": 1.6012023086454503e-05,
|
2084 |
+
"loss": 0.3994,
|
2085 |
+
"step": 1730
|
2086 |
+
},
|
2087 |
+
{
|
2088 |
+
"epoch": 1.86,
|
2089 |
+
"learning_rate": 1.588138615592278e-05,
|
2090 |
+
"loss": 0.2006,
|
2091 |
+
"step": 1735
|
2092 |
+
},
|
2093 |
+
{
|
2094 |
+
"epoch": 1.86,
|
2095 |
+
"learning_rate": 1.5751035795691727e-05,
|
2096 |
+
"loss": 0.5552,
|
2097 |
+
"step": 1740
|
2098 |
+
},
|
2099 |
+
{
|
2100 |
+
"epoch": 1.87,
|
2101 |
+
"learning_rate": 1.5620976102276714e-05,
|
2102 |
+
"loss": 0.3602,
|
2103 |
+
"step": 1745
|
2104 |
+
},
|
2105 |
+
{
|
2106 |
+
"epoch": 1.87,
|
2107 |
+
"learning_rate": 1.5491211163058357e-05,
|
2108 |
+
"loss": 0.2798,
|
2109 |
+
"step": 1750
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 1.88,
|
2113 |
+
"learning_rate": 1.5361745056154048e-05,
|
2114 |
+
"loss": 0.2709,
|
2115 |
+
"step": 1755
|
2116 |
+
},
|
2117 |
+
{
|
2118 |
+
"epoch": 1.88,
|
2119 |
+
"learning_rate": 1.523258185028977e-05,
|
2120 |
+
"loss": 0.3803,
|
2121 |
+
"step": 1760
|
2122 |
+
},
|
2123 |
+
{
|
2124 |
+
"epoch": 1.89,
|
2125 |
+
"learning_rate": 1.5103725604672275e-05,
|
2126 |
+
"loss": 0.2861,
|
2127 |
+
"step": 1765
|
2128 |
+
},
|
2129 |
+
{
|
2130 |
+
"epoch": 1.9,
|
2131 |
+
"learning_rate": 1.4975180368861458e-05,
|
2132 |
+
"loss": 0.3521,
|
2133 |
+
"step": 1770
|
2134 |
+
},
|
2135 |
+
{
|
2136 |
+
"epoch": 1.9,
|
2137 |
+
"learning_rate": 1.4846950182643143e-05,
|
2138 |
+
"loss": 0.3457,
|
2139 |
+
"step": 1775
|
2140 |
+
},
|
2141 |
+
{
|
2142 |
+
"epoch": 1.91,
|
2143 |
+
"learning_rate": 1.4719039075902091e-05,
|
2144 |
+
"loss": 0.333,
|
2145 |
+
"step": 1780
|
2146 |
+
},
|
2147 |
+
{
|
2148 |
+
"epoch": 1.91,
|
2149 |
+
"learning_rate": 1.4591451068495382e-05,
|
2150 |
+
"loss": 0.2831,
|
2151 |
+
"step": 1785
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 1.92,
|
2155 |
+
"learning_rate": 1.4464190170126034e-05,
|
2156 |
+
"loss": 0.3263,
|
2157 |
+
"step": 1790
|
2158 |
+
},
|
2159 |
+
{
|
2160 |
+
"epoch": 1.92,
|
2161 |
+
"learning_rate": 1.433726038021707e-05,
|
2162 |
+
"loss": 0.301,
|
2163 |
+
"step": 1795
|
2164 |
+
},
|
2165 |
+
{
|
2166 |
+
"epoch": 1.93,
|
2167 |
+
"learning_rate": 1.4210665687785734e-05,
|
2168 |
+
"loss": 0.2941,
|
2169 |
+
"step": 1800
|
2170 |
+
},
|
2171 |
+
{
|
2172 |
+
"epoch": 1.93,
|
2173 |
+
"learning_rate": 1.4084410071318201e-05,
|
2174 |
+
"loss": 0.2209,
|
2175 |
+
"step": 1805
|
2176 |
+
},
|
2177 |
+
{
|
2178 |
+
"epoch": 1.94,
|
2179 |
+
"learning_rate": 1.3958497498644529e-05,
|
2180 |
+
"loss": 0.4193,
|
2181 |
+
"step": 1810
|
2182 |
+
},
|
2183 |
+
{
|
2184 |
+
"epoch": 1.94,
|
2185 |
+
"learning_rate": 1.3832931926813907e-05,
|
2186 |
+
"loss": 0.302,
|
2187 |
+
"step": 1815
|
2188 |
+
},
|
2189 |
+
{
|
2190 |
+
"epoch": 1.95,
|
2191 |
+
"learning_rate": 1.3707717301970416e-05,
|
2192 |
+
"loss": 0.3154,
|
2193 |
+
"step": 1820
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 1.95,
|
2197 |
+
"learning_rate": 1.3582857559228867e-05,
|
2198 |
+
"loss": 0.548,
|
2199 |
+
"step": 1825
|
2200 |
+
},
|
2201 |
+
{
|
2202 |
+
"epoch": 1.96,
|
2203 |
+
"learning_rate": 1.345835662255126e-05,
|
2204 |
+
"loss": 0.2957,
|
2205 |
+
"step": 1830
|
2206 |
+
},
|
2207 |
+
{
|
2208 |
+
"epoch": 1.96,
|
2209 |
+
"learning_rate": 1.3334218404623373e-05,
|
2210 |
+
"loss": 0.2932,
|
2211 |
+
"step": 1835
|
2212 |
+
},
|
2213 |
+
{
|
2214 |
+
"epoch": 1.97,
|
2215 |
+
"learning_rate": 1.3210446806731857e-05,
|
2216 |
+
"loss": 0.3821,
|
2217 |
+
"step": 1840
|
2218 |
+
},
|
2219 |
+
{
|
2220 |
+
"epoch": 1.98,
|
2221 |
+
"learning_rate": 1.308704571864161e-05,
|
2222 |
+
"loss": 0.3919,
|
2223 |
+
"step": 1845
|
2224 |
+
},
|
2225 |
+
{
|
2226 |
+
"epoch": 1.98,
|
2227 |
+
"learning_rate": 1.2964019018473545e-05,
|
2228 |
+
"loss": 0.2465,
|
2229 |
+
"step": 1850
|
2230 |
+
},
|
2231 |
+
{
|
2232 |
+
"epoch": 1.99,
|
2233 |
+
"learning_rate": 1.2841370572582661e-05,
|
2234 |
+
"loss": 0.4155,
|
2235 |
+
"step": 1855
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 1.99,
|
2239 |
+
"learning_rate": 1.2719104235436613e-05,
|
2240 |
+
"loss": 0.379,
|
2241 |
+
"step": 1860
|
2242 |
+
},
|
2243 |
+
{
|
2244 |
+
"epoch": 2.0,
|
2245 |
+
"learning_rate": 1.2597223849494538e-05,
|
2246 |
+
"loss": 0.304,
|
2247 |
+
"step": 1865
|
2248 |
+
},
|
2249 |
+
{
|
2250 |
+
"epoch": 2.0,
|
2251 |
+
"learning_rate": 1.2475733245086263e-05,
|
2252 |
+
"loss": 0.3512,
|
2253 |
+
"step": 1870
|
2254 |
+
},
|
2255 |
+
{
|
2256 |
+
"epoch": 2.01,
|
2257 |
+
"learning_rate": 1.2354636240292031e-05,
|
2258 |
+
"loss": 0.1898,
|
2259 |
+
"step": 1875
|
2260 |
+
},
|
2261 |
+
{
|
2262 |
+
"epoch": 2.01,
|
2263 |
+
"learning_rate": 1.2233936640822385e-05,
|
2264 |
+
"loss": 0.1608,
|
2265 |
+
"step": 1880
|
2266 |
+
},
|
2267 |
+
{
|
2268 |
+
"epoch": 2.02,
|
2269 |
+
"learning_rate": 1.211363823989867e-05,
|
2270 |
+
"loss": 0.1453,
|
2271 |
+
"step": 1885
|
2272 |
+
},
|
2273 |
+
{
|
2274 |
+
"epoch": 2.02,
|
2275 |
+
"learning_rate": 1.1993744818133742e-05,
|
2276 |
+
"loss": 0.1639,
|
2277 |
+
"step": 1890
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 2.03,
|
2281 |
+
"learning_rate": 1.187426014341323e-05,
|
2282 |
+
"loss": 0.1394,
|
2283 |
+
"step": 1895
|
2284 |
+
},
|
2285 |
+
{
|
2286 |
+
"epoch": 2.03,
|
2287 |
+
"learning_rate": 1.1755187970777065e-05,
|
2288 |
+
"loss": 0.1596,
|
2289 |
+
"step": 1900
|
2290 |
+
},
|
2291 |
+
{
|
2292 |
+
"epoch": 2.04,
|
2293 |
+
"learning_rate": 1.1636532042301512e-05,
|
2294 |
+
"loss": 0.1185,
|
2295 |
+
"step": 1905
|
2296 |
+
},
|
2297 |
+
{
|
2298 |
+
"epoch": 2.04,
|
2299 |
+
"learning_rate": 1.1518296086981514e-05,
|
2300 |
+
"loss": 0.1359,
|
2301 |
+
"step": 1910
|
2302 |
+
},
|
2303 |
+
{
|
2304 |
+
"epoch": 2.05,
|
2305 |
+
"learning_rate": 1.1400483820613563e-05,
|
2306 |
+
"loss": 0.1435,
|
2307 |
+
"step": 1915
|
2308 |
+
},
|
2309 |
+
{
|
2310 |
+
"epoch": 2.06,
|
2311 |
+
"learning_rate": 1.1283098945678902e-05,
|
2312 |
+
"loss": 0.1491,
|
2313 |
+
"step": 1920
|
2314 |
+
},
|
2315 |
+
{
|
2316 |
+
"epoch": 2.06,
|
2317 |
+
"learning_rate": 1.1166145151227117e-05,
|
2318 |
+
"loss": 0.1697,
|
2319 |
+
"step": 1925
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 2.07,
|
2323 |
+
"learning_rate": 1.1049626112760314e-05,
|
2324 |
+
"loss": 0.1224,
|
2325 |
+
"step": 1930
|
2326 |
+
},
|
2327 |
+
{
|
2328 |
+
"epoch": 2.07,
|
2329 |
+
"learning_rate": 1.0933545492117473e-05,
|
2330 |
+
"loss": 0.1467,
|
2331 |
+
"step": 1935
|
2332 |
+
},
|
2333 |
+
{
|
2334 |
+
"epoch": 2.08,
|
2335 |
+
"learning_rate": 1.0817906937359482e-05,
|
2336 |
+
"loss": 0.1813,
|
2337 |
+
"step": 1940
|
2338 |
+
},
|
2339 |
+
{
|
2340 |
+
"epoch": 2.08,
|
2341 |
+
"learning_rate": 1.070271408265441e-05,
|
2342 |
+
"loss": 0.1128,
|
2343 |
+
"step": 1945
|
2344 |
+
},
|
2345 |
+
{
|
2346 |
+
"epoch": 2.09,
|
2347 |
+
"learning_rate": 1.058797054816335e-05,
|
2348 |
+
"loss": 0.1896,
|
2349 |
+
"step": 1950
|
2350 |
+
},
|
2351 |
+
{
|
2352 |
+
"epoch": 2.09,
|
2353 |
+
"learning_rate": 1.0473679939926626e-05,
|
2354 |
+
"loss": 0.1205,
|
2355 |
+
"step": 1955
|
2356 |
+
},
|
2357 |
+
{
|
2358 |
+
"epoch": 2.1,
|
2359 |
+
"learning_rate": 1.0359845849750466e-05,
|
2360 |
+
"loss": 0.1581,
|
2361 |
+
"step": 1960
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 2.1,
|
2365 |
+
"learning_rate": 1.0246471855094106e-05,
|
2366 |
+
"loss": 0.1542,
|
2367 |
+
"step": 1965
|
2368 |
+
},
|
2369 |
+
{
|
2370 |
+
"epoch": 2.11,
|
2371 |
+
"learning_rate": 1.0133561518957402e-05,
|
2372 |
+
"loss": 0.1542,
|
2373 |
+
"step": 1970
|
2374 |
+
},
|
2375 |
+
{
|
2376 |
+
"epoch": 2.11,
|
2377 |
+
"learning_rate": 1.0021118389768833e-05,
|
2378 |
+
"loss": 0.0885,
|
2379 |
+
"step": 1975
|
2380 |
+
},
|
2381 |
+
{
|
2382 |
+
"epoch": 2.12,
|
2383 |
+
"learning_rate": 9.909146001273947e-06,
|
2384 |
+
"loss": 0.109,
|
2385 |
+
"step": 1980
|
2386 |
+
},
|
2387 |
+
{
|
2388 |
+
"epoch": 2.13,
|
2389 |
+
"learning_rate": 9.797647872424413e-06,
|
2390 |
+
"loss": 0.1327,
|
2391 |
+
"step": 1985
|
2392 |
+
},
|
2393 |
+
{
|
2394 |
+
"epoch": 2.13,
|
2395 |
+
"learning_rate": 9.686627507267287e-06,
|
2396 |
+
"loss": 0.1584,
|
2397 |
+
"step": 1990
|
2398 |
+
},
|
2399 |
+
{
|
2400 |
+
"epoch": 2.14,
|
2401 |
+
"learning_rate": 9.576088394835023e-06,
|
2402 |
+
"loss": 0.2896,
|
2403 |
+
"step": 1995
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 2.14,
|
2407 |
+
"learning_rate": 9.466034009035724e-06,
|
2408 |
+
"loss": 0.2332,
|
2409 |
+
"step": 2000
|
2410 |
+
},
|
2411 |
+
{
|
2412 |
+
"epoch": 2.15,
|
2413 |
+
"learning_rate": 9.356467808544033e-06,
|
2414 |
+
"loss": 0.1039,
|
2415 |
+
"step": 2005
|
2416 |
+
},
|
2417 |
+
{
|
2418 |
+
"epoch": 2.15,
|
2419 |
+
"learning_rate": 9.247393236692412e-06,
|
2420 |
+
"loss": 0.1014,
|
2421 |
+
"step": 2010
|
2422 |
+
},
|
2423 |
+
{
|
2424 |
+
"epoch": 2.16,
|
2425 |
+
"learning_rate": 9.13881372136293e-06,
|
2426 |
+
"loss": 0.0737,
|
2427 |
+
"step": 2015
|
2428 |
+
},
|
2429 |
+
{
|
2430 |
+
"epoch": 2.16,
|
2431 |
+
"learning_rate": 9.030732674879514e-06,
|
2432 |
+
"loss": 0.1649,
|
2433 |
+
"step": 2020
|
2434 |
+
},
|
2435 |
+
{
|
2436 |
+
"epoch": 2.17,
|
2437 |
+
"learning_rate": 8.923153493900757e-06,
|
2438 |
+
"loss": 0.1502,
|
2439 |
+
"step": 2025
|
2440 |
+
},
|
2441 |
+
{
|
2442 |
+
"epoch": 2.17,
|
2443 |
+
"learning_rate": 8.816079559313147e-06,
|
2444 |
+
"loss": 0.2198,
|
2445 |
+
"step": 2030
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 2.18,
|
2449 |
+
"learning_rate": 8.709514236124783e-06,
|
2450 |
+
"loss": 0.2312,
|
2451 |
+
"step": 2035
|
2452 |
+
},
|
2453 |
+
{
|
2454 |
+
"epoch": 2.18,
|
2455 |
+
"learning_rate": 8.603460873359687e-06,
|
2456 |
+
"loss": 0.1627,
|
2457 |
+
"step": 2040
|
2458 |
+
},
|
2459 |
+
{
|
2460 |
+
"epoch": 2.19,
|
2461 |
+
"learning_rate": 8.49792280395251e-06,
|
2462 |
+
"loss": 0.0986,
|
2463 |
+
"step": 2045
|
2464 |
+
},
|
2465 |
+
{
|
2466 |
+
"epoch": 2.19,
|
2467 |
+
"learning_rate": 8.392903344643807e-06,
|
2468 |
+
"loss": 0.1889,
|
2469 |
+
"step": 2050
|
2470 |
+
},
|
2471 |
+
{
|
2472 |
+
"epoch": 2.2,
|
2473 |
+
"learning_rate": 8.288405795875773e-06,
|
2474 |
+
"loss": 0.1543,
|
2475 |
+
"step": 2055
|
2476 |
+
},
|
2477 |
+
{
|
2478 |
+
"epoch": 2.21,
|
2479 |
+
"learning_rate": 8.184433441688564e-06,
|
2480 |
+
"loss": 0.0997,
|
2481 |
+
"step": 2060
|
2482 |
+
},
|
2483 |
+
{
|
2484 |
+
"epoch": 2.21,
|
2485 |
+
"learning_rate": 8.08098954961706e-06,
|
2486 |
+
"loss": 0.1241,
|
2487 |
+
"step": 2065
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 2.22,
|
2491 |
+
"learning_rate": 7.978077370588196e-06,
|
2492 |
+
"loss": 0.1259,
|
2493 |
+
"step": 2070
|
2494 |
+
},
|
2495 |
+
{
|
2496 |
+
"epoch": 2.22,
|
2497 |
+
"learning_rate": 7.875700138818756e-06,
|
2498 |
+
"loss": 0.1803,
|
2499 |
+
"step": 2075
|
2500 |
+
},
|
2501 |
+
{
|
2502 |
+
"epoch": 2.23,
|
2503 |
+
"learning_rate": 7.773861071713779e-06,
|
2504 |
+
"loss": 0.1437,
|
2505 |
+
"step": 2080
|
2506 |
+
},
|
2507 |
+
{
|
2508 |
+
"epoch": 2.23,
|
2509 |
+
"learning_rate": 7.672563369765429e-06,
|
2510 |
+
"loss": 0.131,
|
2511 |
+
"step": 2085
|
2512 |
+
},
|
2513 |
+
{
|
2514 |
+
"epoch": 2.24,
|
2515 |
+
"learning_rate": 7.571810216452388e-06,
|
2516 |
+
"loss": 0.193,
|
2517 |
+
"step": 2090
|
2518 |
+
},
|
2519 |
+
{
|
2520 |
+
"epoch": 2.24,
|
2521 |
+
"learning_rate": 7.4716047781398485e-06,
|
2522 |
+
"loss": 0.1658,
|
2523 |
+
"step": 2095
|
2524 |
+
},
|
2525 |
+
{
|
2526 |
+
"epoch": 2.25,
|
2527 |
+
"learning_rate": 7.3719502039799856e-06,
|
2528 |
+
"loss": 0.1377,
|
2529 |
+
"step": 2100
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 2.25,
|
2533 |
+
"learning_rate": 7.2728496258129915e-06,
|
2534 |
+
"loss": 0.1433,
|
2535 |
+
"step": 2105
|
2536 |
+
},
|
2537 |
+
{
|
2538 |
+
"epoch": 2.26,
|
2539 |
+
"learning_rate": 7.174306158068625e-06,
|
2540 |
+
"loss": 0.1309,
|
2541 |
+
"step": 2110
|
2542 |
+
},
|
2543 |
+
{
|
2544 |
+
"epoch": 2.26,
|
2545 |
+
"learning_rate": 7.0763228976683885e-06,
|
2546 |
+
"loss": 0.149,
|
2547 |
+
"step": 2115
|
2548 |
+
},
|
2549 |
+
{
|
2550 |
+
"epoch": 2.27,
|
2551 |
+
"learning_rate": 6.9789029239281574e-06,
|
2552 |
+
"loss": 0.1573,
|
2553 |
+
"step": 2120
|
2554 |
+
},
|
2555 |
+
{
|
2556 |
+
"epoch": 2.28,
|
2557 |
+
"learning_rate": 6.8820492984614324e-06,
|
2558 |
+
"loss": 0.1268,
|
2559 |
+
"step": 2125
|
2560 |
+
},
|
2561 |
+
{
|
2562 |
+
"epoch": 2.28,
|
2563 |
+
"learning_rate": 6.785765065083083e-06,
|
2564 |
+
"loss": 0.0947,
|
2565 |
+
"step": 2130
|
2566 |
+
},
|
2567 |
+
{
|
2568 |
+
"epoch": 2.29,
|
2569 |
+
"learning_rate": 6.690053249713743e-06,
|
2570 |
+
"loss": 0.1492,
|
2571 |
+
"step": 2135
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 2.29,
|
2575 |
+
"learning_rate": 6.594916860284692e-06,
|
2576 |
+
"loss": 0.1955,
|
2577 |
+
"step": 2140
|
2578 |
+
},
|
2579 |
+
{
|
2580 |
+
"epoch": 2.3,
|
2581 |
+
"learning_rate": 6.50035888664329e-06,
|
2582 |
+
"loss": 0.1137,
|
2583 |
+
"step": 2145
|
2584 |
+
},
|
2585 |
+
{
|
2586 |
+
"epoch": 2.3,
|
2587 |
+
"learning_rate": 6.406382300459079e-06,
|
2588 |
+
"loss": 0.1055,
|
2589 |
+
"step": 2150
|
2590 |
+
},
|
2591 |
+
{
|
2592 |
+
"epoch": 2.31,
|
2593 |
+
"learning_rate": 6.312990055130355e-06,
|
2594 |
+
"loss": 0.1119,
|
2595 |
+
"step": 2155
|
2596 |
+
},
|
2597 |
+
{
|
2598 |
+
"epoch": 2.31,
|
2599 |
+
"learning_rate": 6.22018508569136e-06,
|
2600 |
+
"loss": 0.1138,
|
2601 |
+
"step": 2160
|
2602 |
+
},
|
2603 |
+
{
|
2604 |
+
"epoch": 2.32,
|
2605 |
+
"learning_rate": 6.1279703087200186e-06,
|
2606 |
+
"loss": 0.1401,
|
2607 |
+
"step": 2165
|
2608 |
+
},
|
2609 |
+
{
|
2610 |
+
"epoch": 2.32,
|
2611 |
+
"learning_rate": 6.036348622246327e-06,
|
2612 |
+
"loss": 0.1442,
|
2613 |
+
"step": 2170
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 2.33,
|
2617 |
+
"learning_rate": 5.945322905661244e-06,
|
2618 |
+
"loss": 0.115,
|
2619 |
+
"step": 2175
|
2620 |
+
},
|
2621 |
+
{
|
2622 |
+
"epoch": 2.33,
|
2623 |
+
"learning_rate": 5.854896019626208e-06,
|
2624 |
+
"loss": 0.1394,
|
2625 |
+
"step": 2180
|
2626 |
+
},
|
2627 |
+
{
|
2628 |
+
"epoch": 2.34,
|
2629 |
+
"learning_rate": 5.765070805983219e-06,
|
2630 |
+
"loss": 0.1419,
|
2631 |
+
"step": 2185
|
2632 |
+
},
|
2633 |
+
{
|
2634 |
+
"epoch": 2.34,
|
2635 |
+
"learning_rate": 5.675850087665563e-06,
|
2636 |
+
"loss": 0.1352,
|
2637 |
+
"step": 2190
|
2638 |
+
},
|
2639 |
+
{
|
2640 |
+
"epoch": 2.35,
|
2641 |
+
"learning_rate": 5.58723666860908e-06,
|
2642 |
+
"loss": 0.1157,
|
2643 |
+
"step": 2195
|
2644 |
+
},
|
2645 |
+
{
|
2646 |
+
"epoch": 2.36,
|
2647 |
+
"learning_rate": 5.4992333336640115e-06,
|
2648 |
+
"loss": 0.1597,
|
2649 |
+
"step": 2200
|
2650 |
+
},
|
2651 |
+
{
|
2652 |
+
"epoch": 2.36,
|
2653 |
+
"learning_rate": 5.411842848507542e-06,
|
2654 |
+
"loss": 0.1668,
|
2655 |
+
"step": 2205
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 2.37,
|
2659 |
+
"learning_rate": 5.325067959556834e-06,
|
2660 |
+
"loss": 0.106,
|
2661 |
+
"step": 2210
|
2662 |
+
},
|
2663 |
+
{
|
2664 |
+
"epoch": 2.37,
|
2665 |
+
"learning_rate": 5.238911393882751e-06,
|
2666 |
+
"loss": 0.1626,
|
2667 |
+
"step": 2215
|
2668 |
+
},
|
2669 |
+
{
|
2670 |
+
"epoch": 2.38,
|
2671 |
+
"learning_rate": 5.1533758591241075e-06,
|
2672 |
+
"loss": 0.1001,
|
2673 |
+
"step": 2220
|
2674 |
+
},
|
2675 |
+
{
|
2676 |
+
"epoch": 2.38,
|
2677 |
+
"learning_rate": 5.068464043402632e-06,
|
2678 |
+
"loss": 0.1199,
|
2679 |
+
"step": 2225
|
2680 |
+
},
|
2681 |
+
{
|
2682 |
+
"epoch": 2.39,
|
2683 |
+
"learning_rate": 4.984178615238436e-06,
|
2684 |
+
"loss": 0.1118,
|
2685 |
+
"step": 2230
|
2686 |
+
},
|
2687 |
+
{
|
2688 |
+
"epoch": 2.39,
|
2689 |
+
"learning_rate": 4.900522223466208e-06,
|
2690 |
+
"loss": 0.2024,
|
2691 |
+
"step": 2235
|
2692 |
+
},
|
2693 |
+
{
|
2694 |
+
"epoch": 2.4,
|
2695 |
+
"learning_rate": 4.8174974971519075e-06,
|
2696 |
+
"loss": 0.0992,
|
2697 |
+
"step": 2240
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 2.4,
|
2701 |
+
"learning_rate": 4.735107045510179e-06,
|
2702 |
+
"loss": 0.0686,
|
2703 |
+
"step": 2245
|
2704 |
+
},
|
2705 |
+
{
|
2706 |
+
"epoch": 2.41,
|
2707 |
+
"learning_rate": 4.653353457822349e-06,
|
2708 |
+
"loss": 0.2271,
|
2709 |
+
"step": 2250
|
2710 |
+
},
|
2711 |
+
{
|
2712 |
+
"epoch": 2.41,
|
2713 |
+
"learning_rate": 4.572239303355033e-06,
|
2714 |
+
"loss": 0.1831,
|
2715 |
+
"step": 2255
|
2716 |
+
},
|
2717 |
+
{
|
2718 |
+
"epoch": 2.42,
|
2719 |
+
"learning_rate": 4.491767131279414e-06,
|
2720 |
+
"loss": 0.1541,
|
2721 |
+
"step": 2260
|
2722 |
+
},
|
2723 |
+
{
|
2724 |
+
"epoch": 2.43,
|
2725 |
+
"learning_rate": 4.411939470591125e-06,
|
2726 |
+
"loss": 0.2611,
|
2727 |
+
"step": 2265
|
2728 |
+
},
|
2729 |
+
{
|
2730 |
+
"epoch": 2.43,
|
2731 |
+
"learning_rate": 4.332758830030767e-06,
|
2732 |
+
"loss": 0.1216,
|
2733 |
+
"step": 2270
|
2734 |
+
},
|
2735 |
+
{
|
2736 |
+
"epoch": 2.44,
|
2737 |
+
"learning_rate": 4.254227698005048e-06,
|
2738 |
+
"loss": 0.112,
|
2739 |
+
"step": 2275
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 2.44,
|
2743 |
+
"learning_rate": 4.176348542508621e-06,
|
2744 |
+
"loss": 0.1712,
|
2745 |
+
"step": 2280
|
2746 |
+
},
|
2747 |
+
{
|
2748 |
+
"epoch": 2.45,
|
2749 |
+
"learning_rate": 4.099123811046471e-06,
|
2750 |
+
"loss": 0.1919,
|
2751 |
+
"step": 2285
|
2752 |
+
},
|
2753 |
+
{
|
2754 |
+
"epoch": 2.45,
|
2755 |
+
"learning_rate": 4.0225559305570676e-06,
|
2756 |
+
"loss": 0.1018,
|
2757 |
+
"step": 2290
|
2758 |
+
},
|
2759 |
+
{
|
2760 |
+
"epoch": 2.46,
|
2761 |
+
"learning_rate": 3.946647307336013e-06,
|
2762 |
+
"loss": 0.1054,
|
2763 |
+
"step": 2295
|
2764 |
+
},
|
2765 |
+
{
|
2766 |
+
"epoch": 2.46,
|
2767 |
+
"learning_rate": 3.871400326960481e-06,
|
2768 |
+
"loss": 0.1212,
|
2769 |
+
"step": 2300
|
2770 |
+
},
|
2771 |
+
{
|
2772 |
+
"epoch": 2.47,
|
2773 |
+
"learning_rate": 3.7968173542142187e-06,
|
2774 |
+
"loss": 0.1063,
|
2775 |
+
"step": 2305
|
2776 |
+
},
|
2777 |
+
{
|
2778 |
+
"epoch": 2.47,
|
2779 |
+
"learning_rate": 3.722900733013221e-06,
|
2780 |
+
"loss": 0.1183,
|
2781 |
+
"step": 2310
|
2782 |
+
},
|
2783 |
+
{
|
2784 |
+
"epoch": 2.48,
|
2785 |
+
"learning_rate": 3.6496527863320916e-06,
|
2786 |
+
"loss": 0.3089,
|
2787 |
+
"step": 2315
|
2788 |
+
},
|
2789 |
+
{
|
2790 |
+
"epoch": 2.48,
|
2791 |
+
"learning_rate": 3.5770758161310288e-06,
|
2792 |
+
"loss": 0.1188,
|
2793 |
+
"step": 2320
|
2794 |
+
},
|
2795 |
+
{
|
2796 |
+
"epoch": 2.49,
|
2797 |
+
"learning_rate": 3.505172103283483e-06,
|
2798 |
+
"loss": 0.1374,
|
2799 |
+
"step": 2325
|
2800 |
+
},
|
2801 |
+
{
|
2802 |
+
"epoch": 2.49,
|
2803 |
+
"learning_rate": 3.4339439075044555e-06,
|
2804 |
+
"loss": 0.2563,
|
2805 |
+
"step": 2330
|
2806 |
+
},
|
2807 |
+
{
|
2808 |
+
"epoch": 2.5,
|
2809 |
+
"learning_rate": 3.3633934672795242e-06,
|
2810 |
+
"loss": 0.0739,
|
2811 |
+
"step": 2335
|
2812 |
+
},
|
2813 |
+
{
|
2814 |
+
"epoch": 2.51,
|
2815 |
+
"learning_rate": 3.293522999794443e-06,
|
2816 |
+
"loss": 0.1082,
|
2817 |
+
"step": 2340
|
2818 |
+
},
|
2819 |
+
{
|
2820 |
+
"epoch": 2.51,
|
2821 |
+
"learning_rate": 3.2243347008655333e-06,
|
2822 |
+
"loss": 0.1598,
|
2823 |
+
"step": 2345
|
2824 |
+
},
|
2825 |
+
{
|
2826 |
+
"epoch": 2.52,
|
2827 |
+
"learning_rate": 3.1558307448705886e-06,
|
2828 |
+
"loss": 0.1337,
|
2829 |
+
"step": 2350
|
2830 |
+
},
|
2831 |
+
{
|
2832 |
+
"epoch": 2.52,
|
2833 |
+
"learning_rate": 3.0880132846806103e-06,
|
2834 |
+
"loss": 0.1227,
|
2835 |
+
"step": 2355
|
2836 |
+
},
|
2837 |
+
{
|
2838 |
+
"epoch": 2.53,
|
2839 |
+
"learning_rate": 3.020884451592126e-06,
|
2840 |
+
"loss": 0.1446,
|
2841 |
+
"step": 2360
|
2842 |
+
},
|
2843 |
+
{
|
2844 |
+
"epoch": 2.53,
|
2845 |
+
"learning_rate": 2.9544463552601875e-06,
|
2846 |
+
"loss": 0.1262,
|
2847 |
+
"step": 2365
|
2848 |
+
},
|
2849 |
+
{
|
2850 |
+
"epoch": 2.54,
|
2851 |
+
"learning_rate": 2.8887010836321087e-06,
|
2852 |
+
"loss": 0.131,
|
2853 |
+
"step": 2370
|
2854 |
+
},
|
2855 |
+
{
|
2856 |
+
"epoch": 2.54,
|
2857 |
+
"learning_rate": 2.8236507028818306e-06,
|
2858 |
+
"loss": 0.3064,
|
2859 |
+
"step": 2375
|
2860 |
+
},
|
2861 |
+
{
|
2862 |
+
"epoch": 2.55,
|
2863 |
+
"learning_rate": 2.759297257344981e-06,
|
2864 |
+
"loss": 0.1329,
|
2865 |
+
"step": 2380
|
2866 |
+
},
|
2867 |
+
{
|
2868 |
+
"epoch": 2.55,
|
2869 |
+
"learning_rate": 2.695642769454629e-06,
|
2870 |
+
"loss": 0.1269,
|
2871 |
+
"step": 2385
|
2872 |
+
},
|
2873 |
+
{
|
2874 |
+
"epoch": 2.56,
|
2875 |
+
"learning_rate": 2.6326892396777465e-06,
|
2876 |
+
"loss": 0.1515,
|
2877 |
+
"step": 2390
|
2878 |
+
},
|
2879 |
+
{
|
2880 |
+
"epoch": 2.56,
|
2881 |
+
"learning_rate": 2.5704386464522946e-06,
|
2882 |
+
"loss": 0.1497,
|
2883 |
+
"step": 2395
|
2884 |
+
},
|
2885 |
+
{
|
2886 |
+
"epoch": 2.57,
|
2887 |
+
"learning_rate": 2.508892946125119e-06,
|
2888 |
+
"loss": 0.1247,
|
2889 |
+
"step": 2400
|
2890 |
+
},
|
2891 |
+
{
|
2892 |
+
"epoch": 2.57,
|
2893 |
+
"learning_rate": 2.4480540728903876e-06,
|
2894 |
+
"loss": 0.1079,
|
2895 |
+
"step": 2405
|
2896 |
+
},
|
2897 |
+
{
|
2898 |
+
"epoch": 2.58,
|
2899 |
+
"learning_rate": 2.3879239387288615e-06,
|
2900 |
+
"loss": 0.0815,
|
2901 |
+
"step": 2410
|
2902 |
+
},
|
2903 |
+
{
|
2904 |
+
"epoch": 2.59,
|
2905 |
+
"learning_rate": 2.3285044333477834e-06,
|
2906 |
+
"loss": 0.0905,
|
2907 |
+
"step": 2415
|
2908 |
+
},
|
2909 |
+
{
|
2910 |
+
"epoch": 2.59,
|
2911 |
+
"learning_rate": 2.269797424121492e-06,
|
2912 |
+
"loss": 0.1124,
|
2913 |
+
"step": 2420
|
2914 |
+
},
|
2915 |
+
{
|
2916 |
+
"epoch": 2.6,
|
2917 |
+
"learning_rate": 2.2118047560327425e-06,
|
2918 |
+
"loss": 0.1781,
|
2919 |
+
"step": 2425
|
2920 |
+
},
|
2921 |
+
{
|
2922 |
+
"epoch": 2.6,
|
2923 |
+
"learning_rate": 2.154528251614721e-06,
|
2924 |
+
"loss": 0.2224,
|
2925 |
+
"step": 2430
|
2926 |
+
},
|
2927 |
+
{
|
2928 |
+
"epoch": 2.61,
|
2929 |
+
"learning_rate": 2.0979697108937685e-06,
|
2930 |
+
"loss": 0.1721,
|
2931 |
+
"step": 2435
|
2932 |
+
},
|
2933 |
+
{
|
2934 |
+
"epoch": 2.61,
|
2935 |
+
"learning_rate": 2.0421309113328042e-06,
|
2936 |
+
"loss": 0.1502,
|
2937 |
+
"step": 2440
|
2938 |
+
},
|
2939 |
+
{
|
2940 |
+
"epoch": 2.62,
|
2941 |
+
"learning_rate": 1.9870136077754787e-06,
|
2942 |
+
"loss": 0.1646,
|
2943 |
+
"step": 2445
|
2944 |
+
},
|
2945 |
+
{
|
2946 |
+
"epoch": 2.62,
|
2947 |
+
"learning_rate": 1.9326195323910082e-06,
|
2948 |
+
"loss": 0.1088,
|
2949 |
+
"step": 2450
|
2950 |
+
},
|
2951 |
+
{
|
2952 |
+
"epoch": 2.63,
|
2953 |
+
"learning_rate": 1.8789503946197579e-06,
|
2954 |
+
"loss": 0.1143,
|
2955 |
+
"step": 2455
|
2956 |
+
},
|
2957 |
+
{
|
2958 |
+
"epoch": 2.63,
|
2959 |
+
"learning_rate": 1.8260078811195041e-06,
|
2960 |
+
"loss": 0.1692,
|
2961 |
+
"step": 2460
|
2962 |
+
},
|
2963 |
+
{
|
2964 |
+
"epoch": 2.64,
|
2965 |
+
"learning_rate": 1.7737936557124301e-06,
|
2966 |
+
"loss": 0.1727,
|
2967 |
+
"step": 2465
|
2968 |
+
},
|
2969 |
+
{
|
2970 |
+
"epoch": 2.64,
|
2971 |
+
"learning_rate": 1.7223093593328494e-06,
|
2972 |
+
"loss": 0.0885,
|
2973 |
+
"step": 2470
|
2974 |
+
},
|
2975 |
+
{
|
2976 |
+
"epoch": 2.65,
|
2977 |
+
"learning_rate": 1.6715566099756024e-06,
|
2978 |
+
"loss": 0.0786,
|
2979 |
+
"step": 2475
|
2980 |
+
},
|
2981 |
+
{
|
2982 |
+
"epoch": 2.66,
|
2983 |
+
"learning_rate": 1.6215370026452598e-06,
|
2984 |
+
"loss": 0.1128,
|
2985 |
+
"step": 2480
|
2986 |
+
},
|
2987 |
+
{
|
2988 |
+
"epoch": 2.66,
|
2989 |
+
"learning_rate": 1.5722521093059496e-06,
|
2990 |
+
"loss": 0.1089,
|
2991 |
+
"step": 2485
|
2992 |
+
},
|
2993 |
+
{
|
2994 |
+
"epoch": 2.67,
|
2995 |
+
"learning_rate": 1.5237034788319837e-06,
|
2996 |
+
"loss": 0.1772,
|
2997 |
+
"step": 2490
|
2998 |
+
},
|
2999 |
+
{
|
3000 |
+
"epoch": 2.67,
|
3001 |
+
"learning_rate": 1.4758926369591614e-06,
|
3002 |
+
"loss": 0.1795,
|
3003 |
+
"step": 2495
|
3004 |
+
},
|
3005 |
+
{
|
3006 |
+
"epoch": 2.68,
|
3007 |
+
"learning_rate": 1.4288210862368395e-06,
|
3008 |
+
"loss": 0.1264,
|
3009 |
+
"step": 2500
|
3010 |
+
},
|
3011 |
+
{
|
3012 |
+
"epoch": 2.68,
|
3013 |
+
"learning_rate": 1.3824903059806937e-06,
|
3014 |
+
"loss": 0.1129,
|
3015 |
+
"step": 2505
|
3016 |
+
},
|
3017 |
+
{
|
3018 |
+
"epoch": 2.69,
|
3019 |
+
"learning_rate": 1.3369017522262438e-06,
|
3020 |
+
"loss": 0.0854,
|
3021 |
+
"step": 2510
|
3022 |
+
},
|
3023 |
+
{
|
3024 |
+
"epoch": 2.69,
|
3025 |
+
"learning_rate": 1.2920568576830882e-06,
|
3026 |
+
"loss": 0.0878,
|
3027 |
+
"step": 2515
|
3028 |
+
},
|
3029 |
+
{
|
3030 |
+
"epoch": 2.7,
|
3031 |
+
"learning_rate": 1.2479570316898726e-06,
|
3032 |
+
"loss": 0.1346,
|
3033 |
+
"step": 2520
|
3034 |
+
},
|
3035 |
+
{
|
3036 |
+
"epoch": 2.7,
|
3037 |
+
"learning_rate": 1.2046036601700146e-06,
|
3038 |
+
"loss": 0.1298,
|
3039 |
+
"step": 2525
|
3040 |
+
},
|
3041 |
+
{
|
3042 |
+
"epoch": 2.71,
|
3043 |
+
"learning_rate": 1.1619981055881162e-06,
|
3044 |
+
"loss": 0.1598,
|
3045 |
+
"step": 2530
|
3046 |
+
},
|
3047 |
+
{
|
3048 |
+
"epoch": 2.71,
|
3049 |
+
"learning_rate": 1.1201417069071934e-06,
|
3050 |
+
"loss": 0.1295,
|
3051 |
+
"step": 2535
|
3052 |
+
},
|
3053 |
+
{
|
3054 |
+
"epoch": 2.72,
|
3055 |
+
"learning_rate": 1.0790357795465527e-06,
|
3056 |
+
"loss": 0.127,
|
3057 |
+
"step": 2540
|
3058 |
+
},
|
3059 |
+
{
|
3060 |
+
"epoch": 2.72,
|
3061 |
+
"learning_rate": 1.038681615340481e-06,
|
3062 |
+
"loss": 0.1714,
|
3063 |
+
"step": 2545
|
3064 |
+
},
|
3065 |
+
{
|
3066 |
+
"epoch": 2.73,
|
3067 |
+
"learning_rate": 9.99080482497622e-07,
|
3068 |
+
"loss": 0.1494,
|
3069 |
+
"step": 2550
|
3070 |
+
},
|
3071 |
+
{
|
3072 |
+
"epoch": 2.74,
|
3073 |
+
"learning_rate": 9.602336255611522e-07,
|
3074 |
+
"loss": 0.0671,
|
3075 |
+
"step": 2555
|
3076 |
+
},
|
3077 |
+
{
|
3078 |
+
"epoch": 2.74,
|
3079 |
+
"learning_rate": 9.221422653696299e-07,
|
3080 |
+
"loss": 0.1641,
|
3081 |
+
"step": 2560
|
3082 |
+
},
|
3083 |
+
{
|
3084 |
+
"epoch": 2.75,
|
3085 |
+
"learning_rate": 8.848075990186639e-07,
|
3086 |
+
"loss": 0.1617,
|
3087 |
+
"step": 2565
|
3088 |
+
},
|
3089 |
+
{
|
3090 |
+
"epoch": 2.75,
|
3091 |
+
"learning_rate": 8.482307998232686e-07,
|
3092 |
+
"loss": 0.1436,
|
3093 |
+
"step": 2570
|
3094 |
+
},
|
3095 |
+
{
|
3096 |
+
"epoch": 2.76,
|
3097 |
+
"learning_rate": 8.12413017281008e-07,
|
3098 |
+
"loss": 0.1328,
|
3099 |
+
"step": 2575
|
3100 |
+
},
|
3101 |
+
{
|
3102 |
+
"epoch": 2.76,
|
3103 |
+
"learning_rate": 7.773553770358488e-07,
|
3104 |
+
"loss": 0.1612,
|
3105 |
+
"step": 2580
|
3106 |
+
},
|
3107 |
+
{
|
3108 |
+
"epoch": 2.77,
|
3109 |
+
"learning_rate": 7.430589808428062e-07,
|
3110 |
+
"loss": 0.141,
|
3111 |
+
"step": 2585
|
3112 |
+
},
|
3113 |
+
{
|
3114 |
+
"epoch": 2.77,
|
3115 |
+
"learning_rate": 7.095249065333016e-07,
|
3116 |
+
"loss": 0.1324,
|
3117 |
+
"step": 2590
|
3118 |
+
},
|
3119 |
+
{
|
3120 |
+
"epoch": 2.78,
|
3121 |
+
"learning_rate": 6.767542079813089e-07,
|
3122 |
+
"loss": 0.2075,
|
3123 |
+
"step": 2595
|
3124 |
+
},
|
3125 |
+
{
|
3126 |
+
"epoch": 2.78,
|
3127 |
+
"learning_rate": 6.447479150702207e-07,
|
3128 |
+
"loss": 0.1804,
|
3129 |
+
"step": 2600
|
3130 |
+
},
|
3131 |
+
{
|
3132 |
+
"epoch": 2.79,
|
3133 |
+
"learning_rate": 6.135070336604737e-07,
|
3134 |
+
"loss": 0.184,
|
3135 |
+
"step": 2605
|
3136 |
+
},
|
3137 |
+
{
|
3138 |
+
"epoch": 2.79,
|
3139 |
+
"learning_rate": 5.830325455579627e-07,
|
3140 |
+
"loss": 0.2522,
|
3141 |
+
"step": 2610
|
3142 |
+
},
|
3143 |
+
{
|
3144 |
+
"epoch": 2.8,
|
3145 |
+
"learning_rate": 5.533254084831657e-07,
|
3146 |
+
"loss": 0.1122,
|
3147 |
+
"step": 2615
|
3148 |
+
},
|
3149 |
+
{
|
3150 |
+
"epoch": 2.81,
|
3151 |
+
"learning_rate": 5.24386556041051e-07,
|
3152 |
+
"loss": 0.1075,
|
3153 |
+
"step": 2620
|
3154 |
+
},
|
3155 |
+
{
|
3156 |
+
"epoch": 2.81,
|
3157 |
+
"learning_rate": 4.962168976917397e-07,
|
3158 |
+
"loss": 0.1535,
|
3159 |
+
"step": 2625
|
3160 |
+
},
|
3161 |
+
{
|
3162 |
+
"epoch": 2.82,
|
3163 |
+
"learning_rate": 4.688173187219258e-07,
|
3164 |
+
"loss": 0.1201,
|
3165 |
+
"step": 2630
|
3166 |
+
},
|
3167 |
+
{
|
3168 |
+
"epoch": 2.82,
|
3169 |
+
"learning_rate": 4.4218868021703996e-07,
|
3170 |
+
"loss": 0.0932,
|
3171 |
+
"step": 2635
|
3172 |
+
},
|
3173 |
+
{
|
3174 |
+
"epoch": 2.83,
|
3175 |
+
"learning_rate": 4.163318190342075e-07,
|
3176 |
+
"loss": 0.1969,
|
3177 |
+
"step": 2640
|
3178 |
+
},
|
3179 |
+
{
|
3180 |
+
"epoch": 2.83,
|
3181 |
+
"learning_rate": 3.912475477759386e-07,
|
3182 |
+
"loss": 0.1997,
|
3183 |
+
"step": 2645
|
3184 |
+
},
|
3185 |
+
{
|
3186 |
+
"epoch": 2.84,
|
3187 |
+
"learning_rate": 3.6693665476458526e-07,
|
3188 |
+
"loss": 0.1271,
|
3189 |
+
"step": 2650
|
3190 |
+
},
|
3191 |
+
{
|
3192 |
+
"epoch": 2.84,
|
3193 |
+
"learning_rate": 3.433999040175828e-07,
|
3194 |
+
"loss": 0.166,
|
3195 |
+
"step": 2655
|
3196 |
+
},
|
3197 |
+
{
|
3198 |
+
"epoch": 2.85,
|
3199 |
+
"learning_rate": 3.206380352234195e-07,
|
3200 |
+
"loss": 0.1474,
|
3201 |
+
"step": 2660
|
3202 |
+
},
|
3203 |
+
{
|
3204 |
+
"epoch": 2.85,
|
3205 |
+
"learning_rate": 2.986517637184133e-07,
|
3206 |
+
"loss": 0.1127,
|
3207 |
+
"step": 2665
|
3208 |
+
},
|
3209 |
+
{
|
3210 |
+
"epoch": 2.86,
|
3211 |
+
"learning_rate": 2.774417804642021e-07,
|
3212 |
+
"loss": 0.1357,
|
3213 |
+
"step": 2670
|
3214 |
+
},
|
3215 |
+
{
|
3216 |
+
"epoch": 2.86,
|
3217 |
+
"learning_rate": 2.570087520260611e-07,
|
3218 |
+
"loss": 0.0642,
|
3219 |
+
"step": 2675
|
3220 |
+
},
|
3221 |
+
{
|
3222 |
+
"epoch": 2.87,
|
3223 |
+
"learning_rate": 2.3735332055192515e-07,
|
3224 |
+
"loss": 0.111,
|
3225 |
+
"step": 2680
|
3226 |
+
},
|
3227 |
+
{
|
3228 |
+
"epoch": 2.87,
|
3229 |
+
"learning_rate": 2.184761037522326e-07,
|
3230 |
+
"loss": 0.1453,
|
3231 |
+
"step": 2685
|
3232 |
+
},
|
3233 |
+
{
|
3234 |
+
"epoch": 2.88,
|
3235 |
+
"learning_rate": 2.0037769488049363e-07,
|
3236 |
+
"loss": 0.2098,
|
3237 |
+
"step": 2690
|
3238 |
+
},
|
3239 |
+
{
|
3240 |
+
"epoch": 2.89,
|
3241 |
+
"learning_rate": 1.8305866271465521e-07,
|
3242 |
+
"loss": 0.1603,
|
3243 |
+
"step": 2695
|
3244 |
+
},
|
3245 |
+
{
|
3246 |
+
"epoch": 2.89,
|
3247 |
+
"learning_rate": 1.665195515392265e-07,
|
3248 |
+
"loss": 0.1162,
|
3249 |
+
"step": 2700
|
3250 |
+
},
|
3251 |
+
{
|
3252 |
+
"epoch": 2.9,
|
3253 |
+
"learning_rate": 1.50760881128173e-07,
|
3254 |
+
"loss": 0.1069,
|
3255 |
+
"step": 2705
|
3256 |
+
},
|
3257 |
+
{
|
3258 |
+
"epoch": 2.9,
|
3259 |
+
"learning_rate": 1.3578314672857972e-07,
|
3260 |
+
"loss": 0.1596,
|
3261 |
+
"step": 2710
|
3262 |
+
},
|
3263 |
+
{
|
3264 |
+
"epoch": 2.91,
|
3265 |
+
"learning_rate": 1.2158681904508306e-07,
|
3266 |
+
"loss": 0.1448,
|
3267 |
+
"step": 2715
|
3268 |
+
},
|
3269 |
+
{
|
3270 |
+
"epoch": 2.91,
|
3271 |
+
"learning_rate": 1.0817234422508815e-07,
|
3272 |
+
"loss": 0.099,
|
3273 |
+
"step": 2720
|
3274 |
+
},
|
3275 |
+
{
|
3276 |
+
"epoch": 2.92,
|
3277 |
+
"learning_rate": 9.554014384474119e-08,
|
3278 |
+
"loss": 0.1657,
|
3279 |
+
"step": 2725
|
3280 |
+
},
|
3281 |
+
{
|
3282 |
+
"epoch": 2.92,
|
3283 |
+
"learning_rate": 8.369061489568453e-08,
|
3284 |
+
"loss": 0.1751,
|
3285 |
+
"step": 2730
|
3286 |
+
},
|
3287 |
+
{
|
3288 |
+
"epoch": 2.93,
|
3289 |
+
"learning_rate": 7.262412977257215e-08,
|
3290 |
+
"loss": 0.1825,
|
3291 |
+
"step": 2735
|
3292 |
+
},
|
3293 |
+
{
|
3294 |
+
"epoch": 2.93,
|
3295 |
+
"learning_rate": 6.234103626137355e-08,
|
3296 |
+
"loss": 0.2671,
|
3297 |
+
"step": 2740
|
3298 |
+
},
|
3299 |
+
{
|
3300 |
+
"epoch": 2.94,
|
3301 |
+
"learning_rate": 5.284165752844905e-08,
|
3302 |
+
"loss": 0.138,
|
3303 |
+
"step": 2745
|
3304 |
+
},
|
3305 |
+
{
|
3306 |
+
"epoch": 2.94,
|
3307 |
+
"learning_rate": 4.412629211037744e-08,
|
3308 |
+
"loss": 0.1538,
|
3309 |
+
"step": 2750
|
3310 |
+
},
|
3311 |
+
{
|
3312 |
+
"epoch": 2.95,
|
3313 |
+
"learning_rate": 3.6195213904588465e-08,
|
3314 |
+
"loss": 0.0941,
|
3315 |
+
"step": 2755
|
3316 |
+
},
|
3317 |
+
{
|
3318 |
+
"epoch": 2.96,
|
3319 |
+
"learning_rate": 2.9048672160750246e-08,
|
3320 |
+
"loss": 0.1369,
|
3321 |
+
"step": 2760
|
3322 |
+
},
|
3323 |
+
{
|
3324 |
+
"epoch": 2.96,
|
3325 |
+
"learning_rate": 2.2686891472933903e-08,
|
3326 |
+
"loss": 0.1327,
|
3327 |
+
"step": 2765
|
3328 |
+
},
|
3329 |
+
{
|
3330 |
+
"epoch": 2.97,
|
3331 |
+
"learning_rate": 1.7110071772560853e-08,
|
3332 |
+
"loss": 0.0837,
|
3333 |
+
"step": 2770
|
3334 |
+
},
|
3335 |
+
{
|
3336 |
+
"epoch": 2.97,
|
3337 |
+
"learning_rate": 1.231838832211063e-08,
|
3338 |
+
"loss": 0.2136,
|
3339 |
+
"step": 2775
|
3340 |
+
},
|
3341 |
+
{
|
3342 |
+
"epoch": 2.98,
|
3343 |
+
"learning_rate": 8.311991709619716e-09,
|
3344 |
+
"loss": 0.1371,
|
3345 |
+
"step": 2780
|
3346 |
+
},
|
3347 |
+
{
|
3348 |
+
"epoch": 2.98,
|
3349 |
+
"learning_rate": 5.091007843954776e-09,
|
3350 |
+
"loss": 0.1605,
|
3351 |
+
"step": 2785
|
3352 |
+
},
|
3353 |
+
{
|
3354 |
+
"epoch": 2.99,
|
3355 |
+
"learning_rate": 2.655537950838061e-09,
|
3356 |
+
"loss": 0.1396,
|
3357 |
+
"step": 2790
|
3358 |
+
},
|
3359 |
+
{
|
3360 |
+
"epoch": 2.99,
|
3361 |
+
"learning_rate": 1.00565856968049e-09,
|
3362 |
+
"loss": 0.0865,
|
3363 |
+
"step": 2795
|
3364 |
+
},
|
3365 |
+
{
|
3366 |
+
"epoch": 3.0,
|
3367 |
+
"learning_rate": 1.414215511780226e-10,
|
3368 |
+
"loss": 0.1582,
|
3369 |
+
"step": 2800
|
3370 |
+
},
|
3371 |
+
{
|
3372 |
+
"epoch": 3.0,
|
3373 |
+
"step": 2802,
|
3374 |
+
"total_flos": 9.781740939681792e+16,
|
3375 |
+
"train_loss": 0.424075347293623,
|
3376 |
+
"train_runtime": 2120.5143,
|
3377 |
+
"train_samples_per_second": 3.964,
|
3378 |
+
"train_steps_per_second": 1.321
|
3379 |
+
}
|
3380 |
+
],
|
3381 |
+
"logging_steps": 5,
|
3382 |
+
"max_steps": 2802,
|
3383 |
+
"num_train_epochs": 3,
|
3384 |
+
"save_steps": 5000,
|
3385 |
+
"total_flos": 9.781740939681792e+16,
|
3386 |
+
"trial_name": null,
|
3387 |
+
"trial_params": null
|
3388 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3697516be7f89e5ccee07f68b65fdf1fe5a338155ff85dc776525de25b402dc8
|
3 |
+
size 4728
|