--- language: - ru - en datasets: - zjkarina/Vikhr_instruct - dichspace/darulm --- GGUF версия: https://huggingface.co/pirbis/Vikhr-7B-instruct_0.2-GGUF ```python from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig import torch import os os.environ['HF_HOME']='.' MODEL_NAME = "Vikhrmodels/Vikhr-7B-instruct_0.2" DEFAULT_MESSAGE_TEMPLATE = "{role}\n{content}\n" DEFAULT_SYSTEM_PROMPT = "Ты — Вихрь, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им." class Conversation: def __init__( self, message_template=DEFAULT_MESSAGE_TEMPLATE, system_prompt=DEFAULT_SYSTEM_PROMPT, ): self.message_template = message_template self.messages = [{ "role": "system", "content": system_prompt }] def add_user_message(self, message): self.messages.append({ "role": "user", "content": message }) def get_prompt(self, tokenizer): final_text = "" for message in self.messages: message_text = self.message_template.format(**message) final_text += message_text final_text += 'bot' return final_text.strip() def generate(model, tokenizer, prompt, generation_config): data = tokenizer(prompt, return_tensors="pt") data = {k: v.to(model.device) for k, v in data.items()} output_ids = model.generate( **data, generation_config=generation_config )[0] output_ids = output_ids[len(data["input_ids"][0]):] output = tokenizer.decode(output_ids, skip_special_tokens=True) return output.strip() #config = PeftConfig.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, load_in_8bit=True, torch_dtype=torch.float16, device_map="auto" ) #model = PeftModel.from_pretrained( model, MODEL_NAME, torch_dtype=torch.float16) model.eval() tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=False) generation_config = GenerationConfig.from_pretrained(MODEL_NAME) generation_config.max_length=256 generation_config.top_p=0.9 generation_config.top_k=30 generation_config.do_sample = True print(generation_config) inputs = ["Как тебя зовут?", "Кто такой Колмогоров?"] for inp in inputs: conversation = Conversation() conversation.add_user_message(inp) prompt = conversation.get_prompt(tokenizer) output = generate(model, tokenizer, prompt, generation_config) print(inp) print(output) print('\n') ``` [wandb](https://wandb.ai/karina_romanova/vikhr/runs/up2hw5eh?workspace=user-karina_romanova) ## Cite ``` @inproceedings{nikolich2024vikhr, title={Vikhr: Constructing a State-of-the-art Bilingual Open-Source Instruction-Following Large Language Model for {Russian}}, author={Aleksandr Nikolich and Konstantin Korolev and Sergei Bratchikov and Igor Kiselev and Artem Shelmanov }, booktitle = {Proceedings of the 4rd Workshop on Multilingual Representation Learning (MRL) @ EMNLP-2024} year={2024}, publisher = {Association for Computational Linguistics}, url={https://arxiv.org/pdf/2405.13929} } ```