Vijayendra commited on
Commit
538c4bd
1 Parent(s): 53eb14e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -162
README.md CHANGED
@@ -34,166 +34,56 @@ This is the model card of a 🤗 transformers model that has been pushed on the
34
  - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
34
  - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
+ Python '''
38
+ import torch
39
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
40
+
41
+ # Set the device (use GPU if available)
42
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
43
+
44
+ # Load the model and tokenizer from Hugging Face
45
+ tokenizer = T5Tokenizer.from_pretrained("Vijayendra/T5-base-ddg")
46
+ model = T5ForConditionalGeneration.from_pretrained("Vijayendra/T5-base-ddg").to(device)
47
+
48
+ # Define your prompts
49
+ input_prompts = [
50
+ "I am having a bad day at work",
51
+ "What should I do about my stress?",
52
+ "How can I improve my productivity?",
53
+ "I'm feeling very anxious today",
54
+ "What is the best way to learn new skills?",
55
+ "How do I deal with failure?",
56
+ "What do you think about the future of technology?",
57
+ "I want to improve my communication skills",
58
+ "How can I stay motivated at work?",
59
+ "What is the meaning of life?"
60
+ ]
61
+
62
+ # Generate responses
63
+
64
+ generated_responses = {}
65
+ for prompt in input_prompts:
66
+ inputs = tokenizer(prompt, return_tensors="pt", max_length=400, truncation=True, padding="max_length").to(device)
67
+
68
+ model.eval()
69
+ with torch.no_grad():
70
+ generated_ids = model.generate(
71
+ input_ids=inputs['input_ids'],
72
+ attention_mask=inputs['attention_mask'],
73
+ max_length=40,
74
+ num_beams=7,
75
+ repetition_penalty=2.5,
76
+ length_penalty=2.0,
77
+ early_stopping=True
78
+ )
79
+
80
+ # Decode the generated response
81
+ generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
82
+ generated_responses[prompt] = generated_text
83
+
84
+ # Display the input prompts and the generated responses
85
+
86
+ for prompt, response in generated_responses.items():
87
+ print(f"Prompt: {prompt}")
88
+ print(f"Response: {response}\n")
89