--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - Emo-Codec/CREMA-D_synth metrics: - accuracy - precision - recall - f1 model-index: - name: distilhubert-tone-classification results: - task: name: Audio Classification type: audio-classification dataset: name: CREMA-D type: Emo-Codec/CREMA-D_synth metrics: - name: Accuracy type: accuracy value: 0.6809651474530831 - name: Precision type: precision value: 0.6795129218164245 - name: Recall type: recall value: 0.6809651474530831 - name: F1 type: f1 value: 0.6750238551197275 --- # distilhubert-tone-classification This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the CREMA-D dataset. It achieves the following results on the evaluation set: - Loss: 1.1796 - Accuracy: 0.6810 - Precision: 0.6795 - Recall: 0.6810 - F1: 0.6750 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.3122 | 1.0 | 442 | 1.1656 | 0.5737 | 0.5887 | 0.5737 | 0.5679 | | 1.0131 | 2.0 | 884 | 0.9625 | 0.6461 | 0.6572 | 0.6461 | 0.6399 | | 0.7817 | 3.0 | 1326 | 1.0005 | 0.6381 | 0.6506 | 0.6381 | 0.6249 | | 0.6087 | 4.0 | 1768 | 0.9428 | 0.6649 | 0.6572 | 0.6649 | 0.6515 | | 0.4604 | 5.0 | 2210 | 1.0250 | 0.6622 | 0.6710 | 0.6622 | 0.6545 | | 0.3164 | 6.0 | 2652 | 1.0814 | 0.6783 | 0.6821 | 0.6783 | 0.6656 | | 0.2127 | 7.0 | 3094 | 1.1286 | 0.6971 | 0.6991 | 0.6971 | 0.6909 | | 0.1224 | 8.0 | 3536 | 1.1796 | 0.6810 | 0.6795 | 0.6810 | 0.6750 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1