--- language: - vi license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer model-index: - name: xlm-roberta-large_baseline_syllables results: [] --- # xlm-roberta-large_baseline_syllables This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the covid19_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0838 - Patient Id: 0.9883 - Name: 0.9409 - Gender: 0.9712 - Age: 0.9767 - Job: 0.8506 - Location: 0.9670 - Organization: 0.9134 - Date: 0.9860 - Symptom And Disease: 0.8820 - Transportation: 0.9773 - F1 Macro: 0.9453 - F1 Micro: 0.9587 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Patient Id | Name | Gender | Age | Job | Location | Organization | Date | Symptom And Disease | Transportation | F1 Macro | F1 Micro | |:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:------:|:------:|:------:|:--------:|:------------:|:------:|:-------------------:|:--------------:|:--------:|:--------:| | 0.1707 | 1.0 | 629 | 0.1042 | 0.9528 | 0.9227 | 0.8406 | 0.9523 | 0.5899 | 0.9308 | 0.8045 | 0.9874 | 0.8248 | 0.96 | 0.8766 | 0.9140 | | 0.0475 | 2.0 | 1258 | 0.0811 | 0.9841 | 0.9372 | 0.9591 | 0.9876 | 0.6849 | 0.9350 | 0.8817 | 0.9847 | 0.8584 | 0.9831 | 0.9196 | 0.9390 | | 0.0312 | 3.0 | 1887 | 0.0744 | 0.9856 | 0.9297 | 0.9691 | 0.9875 | 0.7554 | 0.9578 | 0.8826 | 0.9869 | 0.8648 | 0.9659 | 0.9285 | 0.9498 | | 0.0196 | 4.0 | 2516 | 0.0808 | 0.9883 | 0.9465 | 0.9644 | 0.9835 | 0.8346 | 0.9635 | 0.9136 | 0.9856 | 0.8730 | 0.9886 | 0.9442 | 0.9565 | | 0.0119 | 5.0 | 3145 | 0.0838 | 0.9883 | 0.9409 | 0.9712 | 0.9767 | 0.8506 | 0.9670 | 0.9134 | 0.9860 | 0.8820 | 0.9773 | 0.9453 | 0.9587 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1