--- language: - vi license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer model-index: - name: xlm-roberta-base_covid_ner_full results: [] --- # xlm-roberta-base_covid_ner_full This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the covid19_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0873 - Patient Id: 0.9883 - Name: 0.9446 - Gender: 0.9785 - Age: 0.9765 - Job: 0.7063 - Location: 0.9538 - Organization: 0.8807 - Date: 0.9851 - Symptom And Disease: 0.8886 - Transportation: 1.0 - F1 Macro: 0.9302 - F1 Micro: 0.9499 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Patient Id | Name | Gender | Age | Job | Location | Organization | Date | Symptom And Disease | Transportation | F1 Macro | F1 Micro | |:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:------:|:------:|:------:|:--------:|:------------:|:------:|:-------------------:|:--------------:|:--------:|:--------:| | 0.2425 | 1.0 | 629 | 0.0989 | 0.9661 | 0.8889 | 0.8030 | 0.9068 | 0.3358 | 0.9152 | 0.8045 | 0.9843 | 0.8291 | 0.9222 | 0.8356 | 0.9001 | | 0.0596 | 2.0 | 1258 | 0.0885 | 0.9807 | 0.9446 | 0.9283 | 0.9620 | 0.4786 | 0.9462 | 0.8665 | 0.9810 | 0.8690 | 0.9885 | 0.8945 | 0.9367 | | 0.0376 | 3.0 | 1887 | 0.0899 | 0.9828 | 0.9284 | 0.9483 | 0.9765 | 0.6406 | 0.9458 | 0.8720 | 0.9865 | 0.8783 | 1.0 | 0.9159 | 0.9423 | | 0.0257 | 4.0 | 2516 | 0.0919 | 0.9875 | 0.9362 | 0.9766 | 0.9805 | 0.6818 | 0.9505 | 0.8827 | 0.9869 | 0.8871 | 1.0 | 0.9270 | 0.9484 | | 0.0172 | 5.0 | 3145 | 0.0873 | 0.9883 | 0.9446 | 0.9785 | 0.9765 | 0.7063 | 0.9538 | 0.8807 | 0.9851 | 0.8886 | 1.0 | 0.9302 | 0.9499 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1