--- language: - vi base_model: vinai/phobert-large tags: - generated_from_trainer model-index: - name: phobert-large_baseline_syllables results: [] --- # phobert-large_baseline_syllables This model is a fine-tuned version of [vinai/phobert-large](https://huggingface.co/vinai/phobert-large) on the covid19_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0933 - Patient Id: 0.9859 - Name: 0.9437 - Gender: 0.9624 - Age: 0.9656 - Job: 0.7954 - Location: 0.9517 - Organization: 0.9037 - Date: 0.9874 - Symptom And Disease: 0.8808 - Transportation: 0.9886 - F1 Macro: 0.9365 - F1 Micro: 0.9505 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Patient Id | Name | Gender | Age | Job | Location | Organization | Date | Symptom And Disease | Transportation | F1 Macro | F1 Micro | |:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:------:|:------:|:------:|:--------:|:------------:|:------:|:-------------------:|:--------------:|:--------:|:--------:| | 0.2696 | 1.0 | 629 | 0.1036 | 0.9758 | 0.9365 | 0.8730 | 0.8965 | 0.6113 | 0.9386 | 0.8447 | 0.9870 | 0.8494 | 0.9721 | 0.8885 | 0.9247 | | 0.0518 | 2.0 | 1258 | 0.0801 | 0.9851 | 0.9491 | 0.9540 | 0.9709 | 0.6063 | 0.9393 | 0.8843 | 0.9887 | 0.8856 | 0.9503 | 0.9114 | 0.9416 | | 0.0301 | 3.0 | 1887 | 0.0856 | 0.9867 | 0.9437 | 0.9524 | 0.9669 | 0.7812 | 0.9496 | 0.8909 | 0.9878 | 0.8740 | 0.9831 | 0.9316 | 0.9475 | | 0.0213 | 4.0 | 2516 | 0.0923 | 0.9855 | 0.9465 | 0.9626 | 0.9605 | 0.7907 | 0.9495 | 0.8948 | 0.9874 | 0.8815 | 0.9775 | 0.9337 | 0.9486 | | 0.0146 | 5.0 | 3145 | 0.0933 | 0.9859 | 0.9437 | 0.9624 | 0.9656 | 0.7954 | 0.9517 | 0.9037 | 0.9874 | 0.8808 | 0.9886 | 0.9365 | 0.9505 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1