# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import sys import tempfile sys.path.append("..") from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class Unconditional(ExamplesTestsAccelerate): def test_train_unconditional(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/unconditional_image_generation/train_unconditional.py --dataset_name hf-internal-testing/dummy_image_class_data --model_config_name_or_path diffusers/ddpm_dummy --resolution 64 --output_dir {tmpdir} --train_batch_size 2 --num_epochs 1 --gradient_accumulation_steps 1 --ddpm_num_inference_steps 2 --learning_rate 1e-3 --lr_warmup_steps 5 """.split() run_command(self._launch_args + test_args, return_stdout=True) # save_pretrained smoke test self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors"))) self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) def test_unconditional_checkpointing_checkpoints_total_limit(self): with tempfile.TemporaryDirectory() as tmpdir: initial_run_args = f""" examples/unconditional_image_generation/train_unconditional.py --dataset_name hf-internal-testing/dummy_image_class_data --model_config_name_or_path diffusers/ddpm_dummy --resolution 64 --output_dir {tmpdir} --train_batch_size 1 --num_epochs 1 --gradient_accumulation_steps 1 --ddpm_num_inference_steps 2 --learning_rate 1e-3 --lr_warmup_steps 5 --checkpointing_steps=2 --checkpoints_total_limit=2 """.split() run_command(self._launch_args + initial_run_args) # check checkpoint directories exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, # checkpoint-2 should have been deleted {"checkpoint-4", "checkpoint-6"}, ) def test_unconditional_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): with tempfile.TemporaryDirectory() as tmpdir: initial_run_args = f""" examples/unconditional_image_generation/train_unconditional.py --dataset_name hf-internal-testing/dummy_image_class_data --model_config_name_or_path diffusers/ddpm_dummy --resolution 64 --output_dir {tmpdir} --train_batch_size 1 --num_epochs 1 --gradient_accumulation_steps 1 --ddpm_num_inference_steps 1 --learning_rate 1e-3 --lr_warmup_steps 5 --checkpointing_steps=2 """.split() run_command(self._launch_args + initial_run_args) # check checkpoint directories exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4", "checkpoint-6"}, ) resume_run_args = f""" examples/unconditional_image_generation/train_unconditional.py --dataset_name hf-internal-testing/dummy_image_class_data --model_config_name_or_path diffusers/ddpm_dummy --resolution 64 --output_dir {tmpdir} --train_batch_size 1 --num_epochs 2 --gradient_accumulation_steps 1 --ddpm_num_inference_steps 1 --learning_rate 1e-3 --lr_warmup_steps 5 --resume_from_checkpoint=checkpoint-6 --checkpointing_steps=2 --checkpoints_total_limit=2 """.split() run_command(self._launch_args + resume_run_args) # check checkpoint directories exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-10", "checkpoint-12"}, )