#!/usr/bin/env python # coding=utf-8 # Copyright 2024 Custom Diffusion authors and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and import argparse import itertools import json import logging import math import os import random import shutil import warnings from pathlib import Path import numpy as np import safetensors import torch import torch.nn.functional as F import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from huggingface_hub import HfApi, create_repo from huggingface_hub.utils import insecure_hashlib from packaging import version from PIL import Image from torch.utils.data import Dataset from torchvision import transforms from tqdm.auto import tqdm from transformers import AutoTokenizer, PretrainedConfig import diffusers from diffusers import ( AutoencoderKL, DDPMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, UNet2DConditionModel, ) from diffusers.loaders import AttnProcsLayers from diffusers.models.attention_processor import ( CustomDiffusionAttnProcessor, CustomDiffusionAttnProcessor2_0, CustomDiffusionXFormersAttnProcessor, ) from diffusers.optimization import get_scheduler from diffusers.utils import check_min_version, is_wandb_available from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card from diffusers.utils.import_utils import is_xformers_available # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.28.0.dev0") logger = get_logger(__name__) def freeze_params(params): for param in params: param.requires_grad = False def save_model_card(repo_id: str, images=None, base_model=str, prompt=str, repo_folder=None): img_str = "" for i, image in enumerate(images): image.save(os.path.join(repo_folder, f"image_{i}.png")) img_str += f"![img_{i}](./image_{i}.png)\n" model_description = f""" # Custom Diffusion - {repo_id} These are Custom Diffusion adaption weights for {base_model}. The weights were trained on {prompt} using [Custom Diffusion](https://www.cs.cmu.edu/~custom-diffusion). You can find some example images in the following. \n {img_str} \nFor more details on the training, please follow [this link](https://github.com/huggingface/diffusers/blob/main/examples/custom_diffusion). """ model_card = load_or_create_model_card( repo_id_or_path=repo_id, from_training=True, license="creativeml-openrail-m", base_model=base_model, prompt=prompt, model_description=model_description, inference=True, ) tags = [ "text-to-image", "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "custom-diffusion", "diffusers-training", ] model_card = populate_model_card(model_card, tags=tags) model_card.save(os.path.join(repo_folder, "README.md")) def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str): text_encoder_config = PretrainedConfig.from_pretrained( pretrained_model_name_or_path, subfolder="text_encoder", revision=revision, ) model_class = text_encoder_config.architectures[0] if model_class == "CLIPTextModel": from transformers import CLIPTextModel return CLIPTextModel elif model_class == "RobertaSeriesModelWithTransformation": from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation return RobertaSeriesModelWithTransformation else: raise ValueError(f"{model_class} is not supported.") def collate_fn(examples, with_prior_preservation): input_ids = [example["instance_prompt_ids"] for example in examples] pixel_values = [example["instance_images"] for example in examples] mask = [example["mask"] for example in examples] # Concat class and instance examples for prior preservation. # We do this to avoid doing two forward passes. if with_prior_preservation: input_ids += [example["class_prompt_ids"] for example in examples] pixel_values += [example["class_images"] for example in examples] mask += [example["class_mask"] for example in examples] input_ids = torch.cat(input_ids, dim=0) pixel_values = torch.stack(pixel_values) mask = torch.stack(mask) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() mask = mask.to(memory_format=torch.contiguous_format).float() batch = {"input_ids": input_ids, "pixel_values": pixel_values, "mask": mask.unsqueeze(1)} return batch class PromptDataset(Dataset): "A simple dataset to prepare the prompts to generate class images on multiple GPUs." def __init__(self, prompt, num_samples): self.prompt = prompt self.num_samples = num_samples def __len__(self): return self.num_samples def __getitem__(self, index): example = {} example["prompt"] = self.prompt example["index"] = index return example class CustomDiffusionDataset(Dataset): """ A dataset to prepare the instance and class images with the prompts for fine-tuning the model. It pre-processes the images and the tokenizes prompts. """ def __init__( self, concepts_list, tokenizer, size=512, mask_size=64, center_crop=False, with_prior_preservation=False, num_class_images=200, hflip=False, aug=True, ): self.size = size self.mask_size = mask_size self.center_crop = center_crop self.tokenizer = tokenizer self.interpolation = Image.BILINEAR self.aug = aug self.instance_images_path = [] self.class_images_path = [] self.with_prior_preservation = with_prior_preservation for concept in concepts_list: inst_img_path = [ (x, concept["instance_prompt"]) for x in Path(concept["instance_data_dir"]).iterdir() if x.is_file() ] self.instance_images_path.extend(inst_img_path) if with_prior_preservation: class_data_root = Path(concept["class_data_dir"]) if os.path.isdir(class_data_root): class_images_path = list(class_data_root.iterdir()) class_prompt = [concept["class_prompt"] for _ in range(len(class_images_path))] else: with open(class_data_root, "r") as f: class_images_path = f.read().splitlines() with open(concept["class_prompt"], "r") as f: class_prompt = f.read().splitlines() class_img_path = list(zip(class_images_path, class_prompt)) self.class_images_path.extend(class_img_path[:num_class_images]) random.shuffle(self.instance_images_path) self.num_instance_images = len(self.instance_images_path) self.num_class_images = len(self.class_images_path) self._length = max(self.num_class_images, self.num_instance_images) self.flip = transforms.RandomHorizontalFlip(0.5 * hflip) self.image_transforms = transforms.Compose( [ self.flip, transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __len__(self): return self._length def preprocess(self, image, scale, resample): outer, inner = self.size, scale factor = self.size // self.mask_size if scale > self.size: outer, inner = scale, self.size top, left = np.random.randint(0, outer - inner + 1), np.random.randint(0, outer - inner + 1) image = image.resize((scale, scale), resample=resample) image = np.array(image).astype(np.uint8) image = (image / 127.5 - 1.0).astype(np.float32) instance_image = np.zeros((self.size, self.size, 3), dtype=np.float32) mask = np.zeros((self.size // factor, self.size // factor)) if scale > self.size: instance_image = image[top : top + inner, left : left + inner, :] mask = np.ones((self.size // factor, self.size // factor)) else: instance_image[top : top + inner, left : left + inner, :] = image mask[ top // factor + 1 : (top + scale) // factor - 1, left // factor + 1 : (left + scale) // factor - 1 ] = 1.0 return instance_image, mask def __getitem__(self, index): example = {} instance_image, instance_prompt = self.instance_images_path[index % self.num_instance_images] instance_image = Image.open(instance_image) if not instance_image.mode == "RGB": instance_image = instance_image.convert("RGB") instance_image = self.flip(instance_image) # apply resize augmentation and create a valid image region mask random_scale = self.size if self.aug: random_scale = ( np.random.randint(self.size // 3, self.size + 1) if np.random.uniform() < 0.66 else np.random.randint(int(1.2 * self.size), int(1.4 * self.size)) ) instance_image, mask = self.preprocess(instance_image, random_scale, self.interpolation) if random_scale < 0.6 * self.size: instance_prompt = np.random.choice(["a far away ", "very small "]) + instance_prompt elif random_scale > self.size: instance_prompt = np.random.choice(["zoomed in ", "close up "]) + instance_prompt example["instance_images"] = torch.from_numpy(instance_image).permute(2, 0, 1) example["mask"] = torch.from_numpy(mask) example["instance_prompt_ids"] = self.tokenizer( instance_prompt, truncation=True, padding="max_length", max_length=self.tokenizer.model_max_length, return_tensors="pt", ).input_ids if self.with_prior_preservation: class_image, class_prompt = self.class_images_path[index % self.num_class_images] class_image = Image.open(class_image) if not class_image.mode == "RGB": class_image = class_image.convert("RGB") example["class_images"] = self.image_transforms(class_image) example["class_mask"] = torch.ones_like(example["mask"]) example["class_prompt_ids"] = self.tokenizer( class_prompt, truncation=True, padding="max_length", max_length=self.tokenizer.model_max_length, return_tensors="pt", ).input_ids return example def save_new_embed(text_encoder, modifier_token_id, accelerator, args, output_dir, safe_serialization=True): """Saves the new token embeddings from the text encoder.""" logger.info("Saving embeddings") learned_embeds = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight for x, y in zip(modifier_token_id, args.modifier_token): learned_embeds_dict = {} learned_embeds_dict[y] = learned_embeds[x] filename = f"{output_dir}/{y}.bin" if safe_serialization: safetensors.torch.save_file(learned_embeds_dict, filename, metadata={"format": "pt"}) else: torch.save(learned_embeds_dict, filename) def parse_args(input_args=None): parser = argparse.ArgumentParser(description="Custom Diffusion training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--variant", type=str, default=None, help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--instance_data_dir", type=str, default=None, help="A folder containing the training data of instance images.", ) parser.add_argument( "--class_data_dir", type=str, default=None, help="A folder containing the training data of class images.", ) parser.add_argument( "--instance_prompt", type=str, default=None, help="The prompt with identifier specifying the instance", ) parser.add_argument( "--class_prompt", type=str, default=None, help="The prompt to specify images in the same class as provided instance images.", ) parser.add_argument( "--validation_prompt", type=str, default=None, help="A prompt that is used during validation to verify that the model is learning.", ) parser.add_argument( "--num_validation_images", type=int, default=2, help="Number of images that should be generated during validation with `validation_prompt`.", ) parser.add_argument( "--validation_steps", type=int, default=50, help=( "Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt" " `args.validation_prompt` multiple times: `args.num_validation_images`." ), ) parser.add_argument( "--with_prior_preservation", default=False, action="store_true", help="Flag to add prior preservation loss.", ) parser.add_argument( "--real_prior", default=False, action="store_true", help="real images as prior.", ) parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") parser.add_argument( "--num_class_images", type=int, default=200, help=( "Minimal class images for prior preservation loss. If there are not enough images already present in" " class_data_dir, additional images will be sampled with class_prompt." ), ) parser.add_argument( "--output_dir", type=str, default="custom-diffusion-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument( "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." ) parser.add_argument( "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." ) parser.add_argument("--num_train_epochs", type=int, default=1) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--checkpointing_steps", type=int, default=250, help=( "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=("Max number of checkpoints to store."), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--dataloader_num_workers", type=int, default=2, help=( "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ), ) parser.add_argument( "--freeze_model", type=str, default="crossattn_kv", choices=["crossattn_kv", "crossattn"], help="crossattn to enable fine-tuning of all params in the cross attention", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument( "--prior_generation_precision", type=str, default=None, choices=["no", "fp32", "fp16", "bf16"], help=( "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32." ), ) parser.add_argument( "--concepts_list", type=str, default=None, help="Path to json containing multiple concepts, will overwrite parameters like instance_prompt, class_prompt, etc.", ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) parser.add_argument( "--set_grads_to_none", action="store_true", help=( "Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain" " behaviors, so disable this argument if it causes any problems. More info:" " https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html" ), ) parser.add_argument( "--modifier_token", type=str, default=None, help="A token to use as a modifier for the concept.", ) parser.add_argument( "--initializer_token", type=str, default="ktn+pll+ucd", help="A token to use as initializer word." ) parser.add_argument("--hflip", action="store_true", help="Apply horizontal flip data augmentation.") parser.add_argument( "--noaug", action="store_true", help="Dont apply augmentation during data augmentation when this flag is enabled.", ) parser.add_argument( "--no_safe_serialization", action="store_true", help="If specified save the checkpoint not in `safetensors` format, but in original PyTorch format instead.", ) if input_args is not None: args = parser.parse_args(input_args) else: args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank if args.with_prior_preservation: if args.concepts_list is None: if args.class_data_dir is None: raise ValueError("You must specify a data directory for class images.") if args.class_prompt is None: raise ValueError("You must specify prompt for class images.") else: # logger is not available yet if args.class_data_dir is not None: warnings.warn("You need not use --class_data_dir without --with_prior_preservation.") if args.class_prompt is not None: warnings.warn("You need not use --class_prompt without --with_prior_preservation.") return args def main(args): if args.report_to == "wandb" and args.hub_token is not None: raise ValueError( "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." " Please use `huggingface-cli login` to authenticate with the Hub." ) logging_dir = Path(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, ) # Disable AMP for MPS. if torch.backends.mps.is_available(): accelerator.native_amp = False if args.report_to == "wandb": if not is_wandb_available(): raise ImportError("Make sure to install wandb if you want to use it for logging during training.") import wandb # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models. # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate. # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers("custom-diffusion", config=vars(args)) # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) if args.concepts_list is None: args.concepts_list = [ { "instance_prompt": args.instance_prompt, "class_prompt": args.class_prompt, "instance_data_dir": args.instance_data_dir, "class_data_dir": args.class_data_dir, } ] else: with open(args.concepts_list, "r") as f: args.concepts_list = json.load(f) # Generate class images if prior preservation is enabled. if args.with_prior_preservation: for i, concept in enumerate(args.concepts_list): class_images_dir = Path(concept["class_data_dir"]) if not class_images_dir.exists(): class_images_dir.mkdir(parents=True, exist_ok=True) if args.real_prior: assert ( class_images_dir / "images" ).exists(), f"Please run: python retrieve.py --class_prompt \"{concept['class_prompt']}\" --class_data_dir {class_images_dir} --num_class_images {args.num_class_images}" assert ( len(list((class_images_dir / "images").iterdir())) == args.num_class_images ), f"Please run: python retrieve.py --class_prompt \"{concept['class_prompt']}\" --class_data_dir {class_images_dir} --num_class_images {args.num_class_images}" assert ( class_images_dir / "caption.txt" ).exists(), f"Please run: python retrieve.py --class_prompt \"{concept['class_prompt']}\" --class_data_dir {class_images_dir} --num_class_images {args.num_class_images}" assert ( class_images_dir / "images.txt" ).exists(), f"Please run: python retrieve.py --class_prompt \"{concept['class_prompt']}\" --class_data_dir {class_images_dir} --num_class_images {args.num_class_images}" concept["class_prompt"] = os.path.join(class_images_dir, "caption.txt") concept["class_data_dir"] = os.path.join(class_images_dir, "images.txt") args.concepts_list[i] = concept accelerator.wait_for_everyone() else: cur_class_images = len(list(class_images_dir.iterdir())) if cur_class_images < args.num_class_images: torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32 if args.prior_generation_precision == "fp32": torch_dtype = torch.float32 elif args.prior_generation_precision == "fp16": torch_dtype = torch.float16 elif args.prior_generation_precision == "bf16": torch_dtype = torch.bfloat16 pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, torch_dtype=torch_dtype, safety_checker=None, revision=args.revision, variant=args.variant, ) pipeline.set_progress_bar_config(disable=True) num_new_images = args.num_class_images - cur_class_images logger.info(f"Number of class images to sample: {num_new_images}.") sample_dataset = PromptDataset(concept["class_prompt"], num_new_images) sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) sample_dataloader = accelerator.prepare(sample_dataloader) pipeline.to(accelerator.device) for example in tqdm( sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process, ): images = pipeline(example["prompt"]).images for i, image in enumerate(images): hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest() image_filename = ( class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" ) image.save(image_filename) del pipeline if torch.cuda.is_available(): torch.cuda.empty_cache() # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load the tokenizer if args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained( args.tokenizer_name, revision=args.revision, use_fast=False, ) elif args.pretrained_model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, use_fast=False, ) # import correct text encoder class text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision) # Load scheduler and models noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") text_encoder = text_encoder_cls.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant ) vae = AutoencoderKL.from_pretrained( args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant ) unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant ) # Adding a modifier token which is optimized #### # Code taken from https://github.com/huggingface/diffusers/blob/main/examples/textual_inversion/textual_inversion.py modifier_token_id = [] initializer_token_id = [] if args.modifier_token is not None: args.modifier_token = args.modifier_token.split("+") args.initializer_token = args.initializer_token.split("+") if len(args.modifier_token) > len(args.initializer_token): raise ValueError("You must specify + separated initializer token for each modifier token.") for modifier_token, initializer_token in zip( args.modifier_token, args.initializer_token[: len(args.modifier_token)] ): # Add the placeholder token in tokenizer num_added_tokens = tokenizer.add_tokens(modifier_token) if num_added_tokens == 0: raise ValueError( f"The tokenizer already contains the token {modifier_token}. Please pass a different" " `modifier_token` that is not already in the tokenizer." ) # Convert the initializer_token, placeholder_token to ids token_ids = tokenizer.encode([initializer_token], add_special_tokens=False) print(token_ids) # Check if initializer_token is a single token or a sequence of tokens if len(token_ids) > 1: raise ValueError("The initializer token must be a single token.") initializer_token_id.append(token_ids[0]) modifier_token_id.append(tokenizer.convert_tokens_to_ids(modifier_token)) # Resize the token embeddings as we are adding new special tokens to the tokenizer text_encoder.resize_token_embeddings(len(tokenizer)) # Initialise the newly added placeholder token with the embeddings of the initializer token token_embeds = text_encoder.get_input_embeddings().weight.data for x, y in zip(modifier_token_id, initializer_token_id): token_embeds[x] = token_embeds[y] # Freeze all parameters except for the token embeddings in text encoder params_to_freeze = itertools.chain( text_encoder.text_model.encoder.parameters(), text_encoder.text_model.final_layer_norm.parameters(), text_encoder.text_model.embeddings.position_embedding.parameters(), ) freeze_params(params_to_freeze) ######################################################## ######################################################## vae.requires_grad_(False) if args.modifier_token is None: text_encoder.requires_grad_(False) unet.requires_grad_(False) # For mixed precision training we cast the text_encoder and vae weights to half-precision # as these models are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move unet, vae and text_encoder to device and cast to weight_dtype if accelerator.mixed_precision != "fp16" and args.modifier_token is not None: text_encoder.to(accelerator.device, dtype=weight_dtype) unet.to(accelerator.device, dtype=weight_dtype) vae.to(accelerator.device, dtype=weight_dtype) attention_class = ( CustomDiffusionAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else CustomDiffusionAttnProcessor ) if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warning( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) attention_class = CustomDiffusionXFormersAttnProcessor else: raise ValueError("xformers is not available. Make sure it is installed correctly") # now we will add new Custom Diffusion weights to the attention layers # It's important to realize here how many attention weights will be added and of which sizes # The sizes of the attention layers consist only of two different variables: # 1) - the "hidden_size", which is increased according to `unet.config.block_out_channels`. # 2) - the "cross attention size", which is set to `unet.config.cross_attention_dim`. # Let's first see how many attention processors we will have to set. # For Stable Diffusion, it should be equal to: # - down blocks (2x attention layers) * (2x transformer layers) * (3x down blocks) = 12 # - mid blocks (2x attention layers) * (1x transformer layers) * (1x mid blocks) = 2 # - up blocks (2x attention layers) * (3x transformer layers) * (3x down blocks) = 18 # => 32 layers # Only train key, value projection layers if freeze_model = 'crossattn_kv' else train all params in the cross attention layer train_kv = True train_q_out = False if args.freeze_model == "crossattn_kv" else True custom_diffusion_attn_procs = {} st = unet.state_dict() for name, _ in unet.attn_processors.items(): cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim if name.startswith("mid_block"): hidden_size = unet.config.block_out_channels[-1] elif name.startswith("up_blocks"): block_id = int(name[len("up_blocks.")]) hidden_size = list(reversed(unet.config.block_out_channels))[block_id] elif name.startswith("down_blocks"): block_id = int(name[len("down_blocks.")]) hidden_size = unet.config.block_out_channels[block_id] layer_name = name.split(".processor")[0] weights = { "to_k_custom_diffusion.weight": st[layer_name + ".to_k.weight"], "to_v_custom_diffusion.weight": st[layer_name + ".to_v.weight"], } if train_q_out: weights["to_q_custom_diffusion.weight"] = st[layer_name + ".to_q.weight"] weights["to_out_custom_diffusion.0.weight"] = st[layer_name + ".to_out.0.weight"] weights["to_out_custom_diffusion.0.bias"] = st[layer_name + ".to_out.0.bias"] if cross_attention_dim is not None: custom_diffusion_attn_procs[name] = attention_class( train_kv=train_kv, train_q_out=train_q_out, hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, ).to(unet.device) custom_diffusion_attn_procs[name].load_state_dict(weights) else: custom_diffusion_attn_procs[name] = attention_class( train_kv=False, train_q_out=False, hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, ) del st unet.set_attn_processor(custom_diffusion_attn_procs) custom_diffusion_layers = AttnProcsLayers(unet.attn_processors) accelerator.register_for_checkpointing(custom_diffusion_layers) if args.gradient_checkpointing: unet.enable_gradient_checkpointing() if args.modifier_token is not None: text_encoder.gradient_checkpointing_enable() # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) if args.with_prior_preservation: args.learning_rate = args.learning_rate * 2.0 # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." ) optimizer_class = bnb.optim.AdamW8bit else: optimizer_class = torch.optim.AdamW # Optimizer creation optimizer = optimizer_class( itertools.chain(text_encoder.get_input_embeddings().parameters(), custom_diffusion_layers.parameters()) if args.modifier_token is not None else custom_diffusion_layers.parameters(), lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) # Dataset and DataLoaders creation: train_dataset = CustomDiffusionDataset( concepts_list=args.concepts_list, tokenizer=tokenizer, with_prior_preservation=args.with_prior_preservation, size=args.resolution, mask_size=vae.encode( torch.randn(1, 3, args.resolution, args.resolution).to(dtype=weight_dtype).to(accelerator.device) ) .latent_dist.sample() .size()[-1], center_crop=args.center_crop, num_class_images=args.num_class_images, hflip=args.hflip, aug=not args.noaug, ) train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation), num_workers=args.dataloader_num_workers, ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps * accelerator.num_processes, ) # Prepare everything with our `accelerator`. if args.modifier_token is not None: custom_diffusion_layers, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( custom_diffusion_layers, text_encoder, optimizer, train_dataloader, lr_scheduler ) else: custom_diffusion_layers, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( custom_diffusion_layers, optimizer, train_dataloader, lr_scheduler ) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num batches each epoch = {len(train_dataloader)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None initial_global_step = 0 else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) initial_global_step = global_step first_epoch = global_step // num_update_steps_per_epoch else: initial_global_step = 0 progress_bar = tqdm( range(0, args.max_train_steps), initial=initial_global_step, desc="Steps", # Only show the progress bar once on each machine. disable=not accelerator.is_local_main_process, ) for epoch in range(first_epoch, args.num_train_epochs): unet.train() if args.modifier_token is not None: text_encoder.train() for step, batch in enumerate(train_dataloader): with accelerator.accumulate(unet), accelerator.accumulate(text_encoder): # Convert images to latent space latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() latents = latents * vae.config.scaling_factor # Sample noise that we'll add to the latents noise = torch.randn_like(latents) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # Get the text embedding for conditioning encoder_hidden_states = text_encoder(batch["input_ids"])[0] # Predict the noise residual model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") if args.with_prior_preservation: # Chunk the noise and model_pred into two parts and compute the loss on each part separately. model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) target, target_prior = torch.chunk(target, 2, dim=0) mask = torch.chunk(batch["mask"], 2, dim=0)[0] # Compute instance loss loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") loss = ((loss * mask).sum([1, 2, 3]) / mask.sum([1, 2, 3])).mean() # Compute prior loss prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") # Add the prior loss to the instance loss. loss = loss + args.prior_loss_weight * prior_loss else: mask = batch["mask"] loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") loss = ((loss * mask).sum([1, 2, 3]) / mask.sum([1, 2, 3])).mean() accelerator.backward(loss) # Zero out the gradients for all token embeddings except the newly added # embeddings for the concept, as we only want to optimize the concept embeddings if args.modifier_token is not None: if accelerator.num_processes > 1: grads_text_encoder = text_encoder.module.get_input_embeddings().weight.grad else: grads_text_encoder = text_encoder.get_input_embeddings().weight.grad # Get the index for tokens that we want to zero the grads for index_grads_to_zero = torch.arange(len(tokenizer)) != modifier_token_id[0] for i in range(1, len(modifier_token_id)): index_grads_to_zero = index_grads_to_zero & ( torch.arange(len(tokenizer)) != modifier_token_id[i] ) grads_text_encoder.data[index_grads_to_zero, :] = grads_text_encoder.data[ index_grads_to_zero, : ].fill_(0) if accelerator.sync_gradients: params_to_clip = ( itertools.chain(text_encoder.parameters(), custom_diffusion_layers.parameters()) if args.modifier_token is not None else custom_diffusion_layers.parameters() ) accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad(set_to_none=args.set_grads_to_none) # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 if global_step % args.checkpointing_steps == 0: if accelerator.is_main_process: # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if args.checkpoints_total_limit is not None: checkpoints = os.listdir(args.output_dir) checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints if len(checkpoints) >= args.checkpoints_total_limit: num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 removing_checkpoints = checkpoints[0:num_to_remove] logger.info( f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" ) logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") for removing_checkpoint in removing_checkpoints: removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) shutil.rmtree(removing_checkpoint) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break if accelerator.is_main_process: images = [] if args.validation_prompt is not None and global_step % args.validation_steps == 0: logger.info( f"Running validation... \n Generating {args.num_validation_images} images with prompt:" f" {args.validation_prompt}." ) # create pipeline pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, unet=accelerator.unwrap_model(unet), text_encoder=accelerator.unwrap_model(text_encoder), tokenizer=tokenizer, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) # run inference generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) images = [ pipeline(args.validation_prompt, num_inference_steps=25, generator=generator, eta=1.0).images[ 0 ] for _ in range(args.num_validation_images) ] for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { "validation": [ wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) ] } ) del pipeline torch.cuda.empty_cache() # Save the custom diffusion layers accelerator.wait_for_everyone() if accelerator.is_main_process: unet = unet.to(torch.float32) unet.save_attn_procs(args.output_dir, safe_serialization=not args.no_safe_serialization) save_new_embed( text_encoder, modifier_token_id, accelerator, args, args.output_dir, safe_serialization=not args.no_safe_serialization, ) # Final inference # Load previous pipeline pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype ) pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) pipeline = pipeline.to(accelerator.device) # load attention processors weight_name = ( "pytorch_custom_diffusion_weights.safetensors" if not args.no_safe_serialization else "pytorch_custom_diffusion_weights.bin" ) pipeline.unet.load_attn_procs(args.output_dir, weight_name=weight_name) for token in args.modifier_token: token_weight_name = f"{token}.safetensors" if not args.no_safe_serialization else f"{token}.bin" pipeline.load_textual_inversion(args.output_dir, weight_name=token_weight_name) # run inference if args.validation_prompt and args.num_validation_images > 0: generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None images = [ pipeline(args.validation_prompt, num_inference_steps=25, generator=generator, eta=1.0).images[0] for _ in range(args.num_validation_images) ] for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { "test": [ wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) ] } ) if args.push_to_hub: save_model_card( repo_id, images=images, base_model=args.pretrained_model_name_or_path, prompt=args.instance_prompt, repo_folder=args.output_dir, ) api = HfApi(token=args.hub_token) api.upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": args = parse_args() main(args)