# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import sys import tempfile sys.path.append("..") from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class ControlNet(ExamplesTestsAccelerate): def test_controlnet_checkpointing_checkpoints_total_limit(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/controlnet/train_controlnet.py --pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe --dataset_name=hf-internal-testing/fill10 --output_dir={tmpdir} --resolution=64 --train_batch_size=1 --gradient_accumulation_steps=1 --max_train_steps=6 --checkpoints_total_limit=2 --checkpointing_steps=2 --controlnet_model_name_or_path=hf-internal-testing/tiny-controlnet """.split() run_command(self._launch_args + test_args) self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"}, ) def test_controlnet_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/controlnet/train_controlnet.py --pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe --dataset_name=hf-internal-testing/fill10 --output_dir={tmpdir} --resolution=64 --train_batch_size=1 --gradient_accumulation_steps=1 --controlnet_model_name_or_path=hf-internal-testing/tiny-controlnet --max_train_steps=6 --checkpointing_steps=2 """.split() run_command(self._launch_args + test_args) self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4", "checkpoint-6"}, ) resume_run_args = f""" examples/controlnet/train_controlnet.py --pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe --dataset_name=hf-internal-testing/fill10 --output_dir={tmpdir} --resolution=64 --train_batch_size=1 --gradient_accumulation_steps=1 --controlnet_model_name_or_path=hf-internal-testing/tiny-controlnet --max_train_steps=8 --checkpointing_steps=2 --resume_from_checkpoint=checkpoint-6 --checkpoints_total_limit=2 """.split() run_command(self._launch_args + resume_run_args) self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"}) class ControlNetSDXL(ExamplesTestsAccelerate): def test_controlnet_sdxl(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/controlnet/train_controlnet_sdxl.py --pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-xl-pipe --dataset_name=hf-internal-testing/fill10 --output_dir={tmpdir} --resolution=64 --train_batch_size=1 --gradient_accumulation_steps=1 --controlnet_model_name_or_path=hf-internal-testing/tiny-controlnet-sdxl --max_train_steps=4 --checkpointing_steps=2 """.split() run_command(self._launch_args + test_args) self.assertTrue(os.path.isfile(os.path.join(tmpdir, "diffusion_pytorch_model.safetensors")))