# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import sys import tempfile import safetensors sys.path.append("..") from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class TextToImageLCM(ExamplesTestsAccelerate): def test_text_to_image_lcm_lora_sdxl(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/consistency_distillation/train_lcm_distill_lora_sdxl.py --pretrained_teacher_model hf-internal-testing/tiny-stable-diffusion-xl-pipe --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --lora_rank 4 --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 2 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} """.split() run_command(self._launch_args + test_args) # save_pretrained smoke test self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) # make sure the state_dict has the correct naming in the parameters. lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) is_lora = all("lora" in k for k in lora_state_dict.keys()) self.assertTrue(is_lora) def test_text_to_image_lcm_lora_sdxl_checkpointing(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/consistency_distillation/train_lcm_distill_lora_sdxl.py --pretrained_teacher_model hf-internal-testing/tiny-stable-diffusion-xl-pipe --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --lora_rank 4 --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 7 --checkpointing_steps 2 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} """.split() run_command(self._launch_args + test_args) self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4", "checkpoint-6"}, ) test_args = f""" examples/consistency_distillation/train_lcm_distill_lora_sdxl.py --pretrained_teacher_model hf-internal-testing/tiny-stable-diffusion-xl-pipe --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --lora_rank 4 --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 9 --checkpointing_steps 2 --resume_from_checkpoint latest --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} """.split() run_command(self._launch_args + test_args) self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4", "checkpoint-6", "checkpoint-8"}, )