# 스케줄러 diffusion 파이프라인은 diffusion 모델, 스케줄러 등의 컴포넌트들로 구성됩니다. 그리고 파이프라인 안의 일부 컴포넌트를 다른 컴포넌트로 교체하는 식의 커스터마이징 역시 가능합니다. 이와 같은 컴포넌트 커스터마이징의 가장 대표적인 예시가 바로 [스케줄러](../api/schedulers/overview.md)를 교체하는 것입니다. 스케쥴러는 다음과 같이 diffusion 시스템의 전반적인 디노이징 프로세스를 정의합니다. - 디노이징 스텝을 얼마나 가져가야 할까? - 확률적으로(stochastic) 혹은 확정적으로(deterministic)? - 디노이징 된 샘플을 찾아내기 위해 어떤 알고리즘을 사용해야 할까? 이러한 프로세스는 다소 난해하고, 디노이징 속도와 디노이징 퀄리티 사이의 트레이드 오프를 정의해야 하는 문제가 될 수 있습니다. 주어진 파이프라인에 어떤 스케줄러가 가장 적합한지를 정량적으로 판단하는 것은 매우 어려운 일입니다. 이로 인해 일단 해당 스케줄러를 직접 사용하여, 생성되는 이미지를 직접 눈으로 보며, 정성적으로 성능을 판단해보는 것이 추천되곤 합니다. ## 파이프라인 불러오기 먼저 스테이블 diffusion 파이프라인을 불러오도록 해보겠습니다. 물론 스테이블 diffusion을 사용하기 위해서는, 허깅페이스 허브에 등록된 사용자여야 하며, 관련 [라이센스](https://huggingface.co/runwayml/stable-diffusion-v1-5)에 동의해야 한다는 점을 잊지 말아주세요. *역자 주: 다만, 현재 신규로 생성한 허깅페이스 계정에 대해서는 라이센스 동의를 요구하지 않는 것으로 보입니다!* ```python from huggingface_hub import login from diffusers import DiffusionPipeline import torch # first we need to login with our access token login() # Now we can download the pipeline pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) ``` 다음으로, GPU로 이동합니다. ```python pipeline.to("cuda") ``` ## 스케줄러 액세스 스케줄러는 언제나 파이프라인의 컴포넌트로서 존재하며, 일반적으로 파이프라인 인스턴스 내에 `scheduler`라는 이름의 속성(property)으로 정의되어 있습니다. ```python pipeline.scheduler ``` **Output**: ``` PNDMScheduler { "_class_name": "PNDMScheduler", "_diffusers_version": "0.8.0.dev0", "beta_end": 0.012, "beta_schedule": "scaled_linear", "beta_start": 0.00085, "clip_sample": false, "num_train_timesteps": 1000, "set_alpha_to_one": false, "skip_prk_steps": true, "steps_offset": 1, "trained_betas": null } ``` 출력 결과를 통해, 우리는 해당 스케줄러가 [`PNDMScheduler`]의 인스턴스라는 것을 알 수 있습니다. 이제 [`PNDMScheduler`]와 다른 스케줄러들의 성능을 비교해보도록 하겠습니다. 먼저 테스트에 사용할 프롬프트를 다음과 같이 정의해보도록 하겠습니다. ```python prompt = "A photograph of an astronaut riding a horse on Mars, high resolution, high definition." ``` 다음으로 유사한 이미지 생성을 보장하기 위해서, 다음과 같이 랜덤시드를 고정해주도록 하겠습니다. ```python generator = torch.Generator(device="cuda").manual_seed(8) image = pipeline(prompt, generator=generator).images[0] image ```



## 스케줄러 교체하기 다음으로 파이프라인의 스케줄러를 다른 스케줄러로 교체하는 방법에 대해 알아보겠습니다. 모든 스케줄러는 [`SchedulerMixin.compatibles`]라는 속성(property)을 갖고 있습니다. 해당 속성은 **호환 가능한** 스케줄러들에 대한 정보를 담고 있습니다. ```python pipeline.scheduler.compatibles ``` **Output**: ``` [diffusers.schedulers.scheduling_lms_discrete.LMSDiscreteScheduler, diffusers.schedulers.scheduling_ddim.DDIMScheduler, diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler, diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler, diffusers.schedulers.scheduling_pndm.PNDMScheduler, diffusers.schedulers.scheduling_ddpm.DDPMScheduler, diffusers.schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteScheduler] ``` 호환되는 스케줄러들을 살펴보면 아래와 같습니다. - [`LMSDiscreteScheduler`], - [`DDIMScheduler`], - [`DPMSolverMultistepScheduler`], - [`EulerDiscreteScheduler`], - [`PNDMScheduler`], - [`DDPMScheduler`], - [`EulerAncestralDiscreteScheduler`]. 앞서 정의했던 프롬프트를 사용해서 각각의 스케줄러들을 비교해보도록 하겠습니다. 먼저 파이프라인 안의 스케줄러를 바꾸기 위해 [`ConfigMixin.config`] 속성과 [`ConfigMixin.from_config`] 메서드를 활용해보려고 합니다. ```python pipeline.scheduler.config ``` **Output**: ``` FrozenDict([('num_train_timesteps', 1000), ('beta_start', 0.00085), ('beta_end', 0.012), ('beta_schedule', 'scaled_linear'), ('trained_betas', None), ('skip_prk_steps', True), ('set_alpha_to_one', False), ('steps_offset', 1), ('_class_name', 'PNDMScheduler'), ('_diffusers_version', '0.8.0.dev0'), ('clip_sample', False)]) ``` 기존 스케줄러의 config를 호환 가능한 다른 스케줄러에 이식하는 것 역시 가능합니다. 다음 예시는 기존 스케줄러(`pipeline.scheduler`)를 다른 종류의 스케줄러(`DDIMScheduler`)로 바꾸는 코드입니다. 기존 스케줄러가 갖고 있던 config를 `.from_config` 메서드의 인자로 전달하는 것을 확인할 수 있습니다. ```python from diffusers import DDIMScheduler pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config) ``` 이제 파이프라인을 실행해서 두 스케줄러 사이의 생성된 이미지의 퀄리티를 비교해봅시다. ```python generator = torch.Generator(device="cuda").manual_seed(8) image = pipeline(prompt, generator=generator).images[0] image ```



## 스케줄러들 비교해보기 지금까지는 [`PNDMScheduler`]와 [`DDIMScheduler`] 스케줄러를 실행해보았습니다. 아직 비교해볼 스케줄러들이 더 많이 남아있으니 계속 비교해보도록 하겠습니다. [`LMSDiscreteScheduler`]을 일반적으로 더 좋은 결과를 보여줍니다. ```python from diffusers import LMSDiscreteScheduler pipeline.scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config) generator = torch.Generator(device="cuda").manual_seed(8) image = pipeline(prompt, generator=generator).images[0] image ```



[`EulerDiscreteScheduler`]와 [`EulerAncestralDiscreteScheduler`] 고작 30번의 inference step만으로도 높은 퀄리티의 이미지를 생성하는 것을 알 수 있습니다. ```python from diffusers import EulerDiscreteScheduler pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config) generator = torch.Generator(device="cuda").manual_seed(8) image = pipeline(prompt, generator=generator, num_inference_steps=30).images[0] image ```



```python from diffusers import EulerAncestralDiscreteScheduler pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pipeline.scheduler.config) generator = torch.Generator(device="cuda").manual_seed(8) image = pipeline(prompt, generator=generator, num_inference_steps=30).images[0] image ```



지금 이 문서를 작성하는 현시점 기준에선, [`DPMSolverMultistepScheduler`]가 시간 대비 가장 좋은 품질의 이미지를 생성하는 것 같습니다. 20번 정도의 스텝만으로도 실행될 수 있습니다. ```python from diffusers import DPMSolverMultistepScheduler pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) generator = torch.Generator(device="cuda").manual_seed(8) image = pipeline(prompt, generator=generator, num_inference_steps=20).images[0] image ```



보시다시피 생성된 이미지들은 매우 비슷하고, 비슷한 퀄리티를 보이는 것 같습니다. 실제로 어떤 스케줄러를 선택할 것인가는 종종 특정 이용 사례에 기반해서 결정되곤 합니다. 결국 여러 종류의 스케줄러를 직접 실행시켜보고 눈으로 직접 비교해서 판단하는 게 좋은 선택일 것 같습니다. ## Flax에서 스케줄러 교체하기 JAX/Flax 사용자인 경우 기본 파이프라인 스케줄러를 변경할 수도 있습니다. 다음은 Flax Stable Diffusion 파이프라인과 초고속 [DDPM-Solver++ 스케줄러를](../api/schedulers/multistep_dpm_solver) 사용하여 추론을 실행하는 방법에 대한 예시입니다 . ```Python import jax import numpy as np from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxStableDiffusionPipeline, FlaxDPMSolverMultistepScheduler model_id = "runwayml/stable-diffusion-v1-5" scheduler, scheduler_state = FlaxDPMSolverMultistepScheduler.from_pretrained( model_id, subfolder="scheduler" ) pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( model_id, scheduler=scheduler, revision="bf16", dtype=jax.numpy.bfloat16, ) params["scheduler"] = scheduler_state # Generate 1 image per parallel device (8 on TPUv2-8 or TPUv3-8) prompt = "a photo of an astronaut riding a horse on mars" num_samples = jax.device_count() prompt_ids = pipeline.prepare_inputs([prompt] * num_samples) prng_seed = jax.random.PRNGKey(0) num_inference_steps = 25 # shard inputs and rng params = replicate(params) prng_seed = jax.random.split(prng_seed, jax.device_count()) prompt_ids = shard(prompt_ids) images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) ``` 다음 Flax 스케줄러는 *아직* Flax Stable Diffusion 파이프라인과 호환되지 않습니다. - `FlaxLMSDiscreteScheduler` - `FlaxDDPMScheduler`