|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Conversion script for the Versatile Stable Diffusion checkpoints.""" |
|
|
|
import argparse |
|
from argparse import Namespace |
|
|
|
import torch |
|
from transformers import ( |
|
CLIPImageProcessor, |
|
CLIPTextModelWithProjection, |
|
CLIPTokenizer, |
|
CLIPVisionModelWithProjection, |
|
) |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
DPMSolverMultistepScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
UNet2DConditionModel, |
|
VersatileDiffusionPipeline, |
|
) |
|
from diffusers.pipelines.versatile_diffusion.modeling_text_unet import UNetFlatConditionModel |
|
|
|
|
|
SCHEDULER_CONFIG = Namespace( |
|
**{ |
|
"beta_linear_start": 0.00085, |
|
"beta_linear_end": 0.012, |
|
"timesteps": 1000, |
|
"scale_factor": 0.18215, |
|
} |
|
) |
|
|
|
IMAGE_UNET_CONFIG = Namespace( |
|
**{ |
|
"input_channels": 4, |
|
"model_channels": 320, |
|
"output_channels": 4, |
|
"num_noattn_blocks": [2, 2, 2, 2], |
|
"channel_mult": [1, 2, 4, 4], |
|
"with_attn": [True, True, True, False], |
|
"num_heads": 8, |
|
"context_dim": 768, |
|
"use_checkpoint": True, |
|
} |
|
) |
|
|
|
TEXT_UNET_CONFIG = Namespace( |
|
**{ |
|
"input_channels": 768, |
|
"model_channels": 320, |
|
"output_channels": 768, |
|
"num_noattn_blocks": [2, 2, 2, 2], |
|
"channel_mult": [1, 2, 4, 4], |
|
"second_dim": [4, 4, 4, 4], |
|
"with_attn": [True, True, True, False], |
|
"num_heads": 8, |
|
"context_dim": 768, |
|
"use_checkpoint": True, |
|
} |
|
) |
|
|
|
AUTOENCODER_CONFIG = Namespace( |
|
**{ |
|
"double_z": True, |
|
"z_channels": 4, |
|
"resolution": 256, |
|
"in_channels": 3, |
|
"out_ch": 3, |
|
"ch": 128, |
|
"ch_mult": [1, 2, 4, 4], |
|
"num_res_blocks": 2, |
|
"attn_resolutions": [], |
|
"dropout": 0.0, |
|
} |
|
) |
|
|
|
|
|
def shave_segments(path, n_shave_prefix_segments=1): |
|
""" |
|
Removes segments. Positive values shave the first segments, negative shave the last segments. |
|
""" |
|
if n_shave_prefix_segments >= 0: |
|
return ".".join(path.split(".")[n_shave_prefix_segments:]) |
|
else: |
|
return ".".join(path.split(".")[:n_shave_prefix_segments]) |
|
|
|
|
|
def renew_resnet_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside resnets to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item.replace("in_layers.0", "norm1") |
|
new_item = new_item.replace("in_layers.2", "conv1") |
|
|
|
new_item = new_item.replace("out_layers.0", "norm2") |
|
new_item = new_item.replace("out_layers.3", "conv2") |
|
|
|
new_item = new_item.replace("emb_layers.1", "time_emb_proj") |
|
new_item = new_item.replace("skip_connection", "conv_shortcut") |
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) |
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside resnets to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
|
|
new_item = new_item.replace("nin_shortcut", "conv_shortcut") |
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) |
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def renew_attention_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside attentions to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside attentions to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
|
|
new_item = new_item.replace("norm.weight", "group_norm.weight") |
|
new_item = new_item.replace("norm.bias", "group_norm.bias") |
|
|
|
new_item = new_item.replace("q.weight", "query.weight") |
|
new_item = new_item.replace("q.bias", "query.bias") |
|
|
|
new_item = new_item.replace("k.weight", "key.weight") |
|
new_item = new_item.replace("k.bias", "key.bias") |
|
|
|
new_item = new_item.replace("v.weight", "value.weight") |
|
new_item = new_item.replace("v.bias", "value.bias") |
|
|
|
new_item = new_item.replace("proj_out.weight", "proj_attn.weight") |
|
new_item = new_item.replace("proj_out.bias", "proj_attn.bias") |
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) |
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def assign_to_checkpoint( |
|
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None |
|
): |
|
""" |
|
This does the final conversion step: take locally converted weights and apply a global renaming |
|
to them. It splits attention layers, and takes into account additional replacements |
|
that may arise. |
|
|
|
Assigns the weights to the new checkpoint. |
|
""" |
|
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." |
|
|
|
|
|
if attention_paths_to_split is not None: |
|
for path, path_map in attention_paths_to_split.items(): |
|
old_tensor = old_checkpoint[path] |
|
channels = old_tensor.shape[0] // 3 |
|
|
|
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) |
|
|
|
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 |
|
|
|
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) |
|
query, key, value = old_tensor.split(channels // num_heads, dim=1) |
|
|
|
checkpoint[path_map["query"]] = query.reshape(target_shape) |
|
checkpoint[path_map["key"]] = key.reshape(target_shape) |
|
checkpoint[path_map["value"]] = value.reshape(target_shape) |
|
|
|
for path in paths: |
|
new_path = path["new"] |
|
|
|
|
|
if attention_paths_to_split is not None and new_path in attention_paths_to_split: |
|
continue |
|
|
|
|
|
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") |
|
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") |
|
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") |
|
|
|
if additional_replacements is not None: |
|
for replacement in additional_replacements: |
|
new_path = new_path.replace(replacement["old"], replacement["new"]) |
|
|
|
|
|
if "proj_attn.weight" in new_path: |
|
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] |
|
elif path["old"] in old_checkpoint: |
|
checkpoint[new_path] = old_checkpoint[path["old"]] |
|
|
|
|
|
def conv_attn_to_linear(checkpoint): |
|
keys = list(checkpoint.keys()) |
|
attn_keys = ["query.weight", "key.weight", "value.weight"] |
|
for key in keys: |
|
if ".".join(key.split(".")[-2:]) in attn_keys: |
|
if checkpoint[key].ndim > 2: |
|
checkpoint[key] = checkpoint[key][:, :, 0, 0] |
|
elif "proj_attn.weight" in key: |
|
if checkpoint[key].ndim > 2: |
|
checkpoint[key] = checkpoint[key][:, :, 0] |
|
|
|
|
|
def create_image_unet_diffusers_config(unet_params): |
|
""" |
|
Creates a config for the diffusers based on the config of the VD model. |
|
""" |
|
|
|
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult] |
|
|
|
down_block_types = [] |
|
resolution = 1 |
|
for i in range(len(block_out_channels)): |
|
block_type = "CrossAttnDownBlock2D" if unet_params.with_attn[i] else "DownBlock2D" |
|
down_block_types.append(block_type) |
|
if i != len(block_out_channels) - 1: |
|
resolution *= 2 |
|
|
|
up_block_types = [] |
|
for i in range(len(block_out_channels)): |
|
block_type = "CrossAttnUpBlock2D" if unet_params.with_attn[-i - 1] else "UpBlock2D" |
|
up_block_types.append(block_type) |
|
resolution //= 2 |
|
|
|
if not all(n == unet_params.num_noattn_blocks[0] for n in unet_params.num_noattn_blocks): |
|
raise ValueError("Not all num_res_blocks are equal, which is not supported in this script.") |
|
|
|
config = { |
|
"sample_size": None, |
|
"in_channels": unet_params.input_channels, |
|
"out_channels": unet_params.output_channels, |
|
"down_block_types": tuple(down_block_types), |
|
"up_block_types": tuple(up_block_types), |
|
"block_out_channels": tuple(block_out_channels), |
|
"layers_per_block": unet_params.num_noattn_blocks[0], |
|
"cross_attention_dim": unet_params.context_dim, |
|
"attention_head_dim": unet_params.num_heads, |
|
} |
|
|
|
return config |
|
|
|
|
|
def create_text_unet_diffusers_config(unet_params): |
|
""" |
|
Creates a config for the diffusers based on the config of the VD model. |
|
""" |
|
|
|
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult] |
|
|
|
down_block_types = [] |
|
resolution = 1 |
|
for i in range(len(block_out_channels)): |
|
block_type = "CrossAttnDownBlockFlat" if unet_params.with_attn[i] else "DownBlockFlat" |
|
down_block_types.append(block_type) |
|
if i != len(block_out_channels) - 1: |
|
resolution *= 2 |
|
|
|
up_block_types = [] |
|
for i in range(len(block_out_channels)): |
|
block_type = "CrossAttnUpBlockFlat" if unet_params.with_attn[-i - 1] else "UpBlockFlat" |
|
up_block_types.append(block_type) |
|
resolution //= 2 |
|
|
|
if not all(n == unet_params.num_noattn_blocks[0] for n in unet_params.num_noattn_blocks): |
|
raise ValueError("Not all num_res_blocks are equal, which is not supported in this script.") |
|
|
|
config = { |
|
"sample_size": None, |
|
"in_channels": (unet_params.input_channels, 1, 1), |
|
"out_channels": (unet_params.output_channels, 1, 1), |
|
"down_block_types": tuple(down_block_types), |
|
"up_block_types": tuple(up_block_types), |
|
"block_out_channels": tuple(block_out_channels), |
|
"layers_per_block": unet_params.num_noattn_blocks[0], |
|
"cross_attention_dim": unet_params.context_dim, |
|
"attention_head_dim": unet_params.num_heads, |
|
} |
|
|
|
return config |
|
|
|
|
|
def create_vae_diffusers_config(vae_params): |
|
""" |
|
Creates a config for the diffusers based on the config of the VD model. |
|
""" |
|
|
|
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult] |
|
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) |
|
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) |
|
|
|
config = { |
|
"sample_size": vae_params.resolution, |
|
"in_channels": vae_params.in_channels, |
|
"out_channels": vae_params.out_ch, |
|
"down_block_types": tuple(down_block_types), |
|
"up_block_types": tuple(up_block_types), |
|
"block_out_channels": tuple(block_out_channels), |
|
"latent_channels": vae_params.z_channels, |
|
"layers_per_block": vae_params.num_res_blocks, |
|
} |
|
return config |
|
|
|
|
|
def create_diffusers_scheduler(original_config): |
|
schedular = DDIMScheduler( |
|
num_train_timesteps=original_config.model.params.timesteps, |
|
beta_start=original_config.model.params.linear_start, |
|
beta_end=original_config.model.params.linear_end, |
|
beta_schedule="scaled_linear", |
|
) |
|
return schedular |
|
|
|
|
|
def convert_vd_unet_checkpoint(checkpoint, config, unet_key, extract_ema=False): |
|
""" |
|
Takes a state dict and a config, and returns a converted checkpoint. |
|
""" |
|
|
|
|
|
unet_state_dict = {} |
|
keys = list(checkpoint.keys()) |
|
|
|
|
|
if sum(k.startswith("model_ema") for k in keys) > 100: |
|
print("Checkpoint has both EMA and non-EMA weights.") |
|
if extract_ema: |
|
print( |
|
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA" |
|
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag." |
|
) |
|
for key in keys: |
|
if key.startswith("model.diffusion_model"): |
|
flat_ema_key = "model_ema." + "".join(key.split(".")[1:]) |
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key) |
|
else: |
|
print( |
|
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA" |
|
" weights (usually better for inference), please make sure to add the `--extract_ema` flag." |
|
) |
|
|
|
for key in keys: |
|
if key.startswith(unet_key): |
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) |
|
|
|
new_checkpoint = {} |
|
|
|
new_checkpoint["time_embedding.linear_1.weight"] = checkpoint["model.diffusion_model.time_embed.0.weight"] |
|
new_checkpoint["time_embedding.linear_1.bias"] = checkpoint["model.diffusion_model.time_embed.0.bias"] |
|
new_checkpoint["time_embedding.linear_2.weight"] = checkpoint["model.diffusion_model.time_embed.2.weight"] |
|
new_checkpoint["time_embedding.linear_2.bias"] = checkpoint["model.diffusion_model.time_embed.2.bias"] |
|
|
|
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] |
|
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] |
|
|
|
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] |
|
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] |
|
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] |
|
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] |
|
|
|
|
|
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) |
|
input_blocks = { |
|
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] |
|
for layer_id in range(num_input_blocks) |
|
} |
|
|
|
|
|
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) |
|
middle_blocks = { |
|
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] |
|
for layer_id in range(num_middle_blocks) |
|
} |
|
|
|
|
|
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) |
|
output_blocks = { |
|
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] |
|
for layer_id in range(num_output_blocks) |
|
} |
|
|
|
for i in range(1, num_input_blocks): |
|
block_id = (i - 1) // (config["layers_per_block"] + 1) |
|
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) |
|
|
|
resnets = [ |
|
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key |
|
] |
|
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] |
|
|
|
if f"input_blocks.{i}.0.op.weight" in unet_state_dict: |
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( |
|
f"input_blocks.{i}.0.op.weight" |
|
) |
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop( |
|
f"input_blocks.{i}.0.op.bias" |
|
) |
|
elif f"input_blocks.{i}.0.weight" in unet_state_dict: |
|
|
|
shape = unet_state_dict[f"input_blocks.{i}.0.weight"].shape |
|
if shape[0] != shape[1]: |
|
continue |
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.weight"] = unet_state_dict.pop( |
|
f"input_blocks.{i}.0.weight" |
|
) |
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.bias"] = unet_state_dict.pop( |
|
f"input_blocks.{i}.0.bias" |
|
) |
|
|
|
paths = renew_resnet_paths(resnets) |
|
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
if len(attentions): |
|
paths = renew_attention_paths(attentions) |
|
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
resnet_0 = middle_blocks[0] |
|
attentions = middle_blocks[1] |
|
resnet_1 = middle_blocks[2] |
|
|
|
resnet_0_paths = renew_resnet_paths(resnet_0) |
|
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) |
|
|
|
resnet_1_paths = renew_resnet_paths(resnet_1) |
|
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) |
|
|
|
attentions_paths = renew_attention_paths(attentions) |
|
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} |
|
assign_to_checkpoint( |
|
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
for i in range(num_output_blocks): |
|
block_id = i // (config["layers_per_block"] + 1) |
|
layer_in_block_id = i % (config["layers_per_block"] + 1) |
|
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] |
|
output_block_list = {} |
|
|
|
for layer in output_block_layers: |
|
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) |
|
if layer_id in output_block_list: |
|
output_block_list[layer_id].append(layer_name) |
|
else: |
|
output_block_list[layer_id] = [layer_name] |
|
|
|
if len(output_block_list) > 1: |
|
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] |
|
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] |
|
|
|
paths = renew_resnet_paths(resnets) |
|
|
|
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
if ["conv.weight", "conv.bias"] in output_block_list.values(): |
|
index = list(output_block_list.values()).index(["conv.weight", "conv.bias"]) |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ |
|
f"output_blocks.{i}.{index}.conv.weight" |
|
] |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ |
|
f"output_blocks.{i}.{index}.conv.bias" |
|
] |
|
|
|
if len(attentions) == 2: |
|
attentions = [] |
|
elif f"output_blocks.{i}.1.weight" in unet_state_dict: |
|
|
|
shape = unet_state_dict[f"output_blocks.{i}.1.weight"].shape |
|
if shape[0] != shape[1]: |
|
continue |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.weight"] = unet_state_dict.pop( |
|
f"output_blocks.{i}.1.weight" |
|
) |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.bias"] = unet_state_dict.pop( |
|
f"output_blocks.{i}.1.bias" |
|
) |
|
|
|
if len(attentions) == 2: |
|
attentions = [] |
|
elif f"output_blocks.{i}.2.weight" in unet_state_dict: |
|
|
|
shape = unet_state_dict[f"output_blocks.{i}.2.weight"].shape |
|
if shape[0] != shape[1]: |
|
continue |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.weight"] = unet_state_dict.pop( |
|
f"output_blocks.{i}.2.weight" |
|
) |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.bias"] = unet_state_dict.pop( |
|
f"output_blocks.{i}.2.bias" |
|
) |
|
|
|
if len(attentions): |
|
paths = renew_attention_paths(attentions) |
|
meta_path = { |
|
"old": f"output_blocks.{i}.1", |
|
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", |
|
} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
else: |
|
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) |
|
for path in resnet_0_paths: |
|
old_path = ".".join(["output_blocks", str(i), path["old"]]) |
|
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) |
|
|
|
new_checkpoint[new_path] = unet_state_dict[old_path] |
|
|
|
return new_checkpoint |
|
|
|
|
|
def convert_vd_vae_checkpoint(checkpoint, config): |
|
|
|
vae_state_dict = {} |
|
keys = list(checkpoint.keys()) |
|
for key in keys: |
|
vae_state_dict[key] = checkpoint.get(key) |
|
|
|
new_checkpoint = {} |
|
|
|
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] |
|
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] |
|
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] |
|
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] |
|
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] |
|
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] |
|
|
|
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] |
|
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] |
|
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] |
|
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] |
|
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] |
|
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] |
|
|
|
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] |
|
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] |
|
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] |
|
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] |
|
|
|
|
|
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) |
|
down_blocks = { |
|
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) |
|
} |
|
|
|
|
|
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) |
|
up_blocks = { |
|
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) |
|
} |
|
|
|
for i in range(num_down_blocks): |
|
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] |
|
|
|
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: |
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( |
|
f"encoder.down.{i}.downsample.conv.weight" |
|
) |
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( |
|
f"encoder.down.{i}.downsample.conv.bias" |
|
) |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] |
|
num_mid_res_blocks = 2 |
|
for i in range(1, num_mid_res_blocks + 1): |
|
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] |
|
paths = renew_vae_attention_paths(mid_attentions) |
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
conv_attn_to_linear(new_checkpoint) |
|
|
|
for i in range(num_up_blocks): |
|
block_id = num_up_blocks - 1 - i |
|
resnets = [ |
|
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key |
|
] |
|
|
|
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: |
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ |
|
f"decoder.up.{block_id}.upsample.conv.weight" |
|
] |
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ |
|
f"decoder.up.{block_id}.upsample.conv.bias" |
|
] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] |
|
num_mid_res_blocks = 2 |
|
for i in range(1, num_mid_res_blocks + 1): |
|
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] |
|
paths = renew_vae_attention_paths(mid_attentions) |
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
conv_attn_to_linear(new_checkpoint) |
|
return new_checkpoint |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--unet_checkpoint_path", default=None, type=str, required=False, help="Path to the checkpoint to convert." |
|
) |
|
parser.add_argument( |
|
"--vae_checkpoint_path", default=None, type=str, required=False, help="Path to the checkpoint to convert." |
|
) |
|
parser.add_argument( |
|
"--optimus_checkpoint_path", default=None, type=str, required=False, help="Path to the checkpoint to convert." |
|
) |
|
parser.add_argument( |
|
"--scheduler_type", |
|
default="pndm", |
|
type=str, |
|
help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", |
|
) |
|
parser.add_argument( |
|
"--extract_ema", |
|
action="store_true", |
|
help=( |
|
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" |
|
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" |
|
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." |
|
), |
|
) |
|
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") |
|
|
|
args = parser.parse_args() |
|
|
|
scheduler_config = SCHEDULER_CONFIG |
|
|
|
num_train_timesteps = scheduler_config.timesteps |
|
beta_start = scheduler_config.beta_linear_start |
|
beta_end = scheduler_config.beta_linear_end |
|
if args.scheduler_type == "pndm": |
|
scheduler = PNDMScheduler( |
|
beta_end=beta_end, |
|
beta_schedule="scaled_linear", |
|
beta_start=beta_start, |
|
num_train_timesteps=num_train_timesteps, |
|
skip_prk_steps=True, |
|
steps_offset=1, |
|
) |
|
elif args.scheduler_type == "lms": |
|
scheduler = LMSDiscreteScheduler(beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear") |
|
elif args.scheduler_type == "euler": |
|
scheduler = EulerDiscreteScheduler(beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear") |
|
elif args.scheduler_type == "euler-ancestral": |
|
scheduler = EulerAncestralDiscreteScheduler( |
|
beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear" |
|
) |
|
elif args.scheduler_type == "dpm": |
|
scheduler = DPMSolverMultistepScheduler( |
|
beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear" |
|
) |
|
elif args.scheduler_type == "ddim": |
|
scheduler = DDIMScheduler( |
|
beta_start=beta_start, |
|
beta_end=beta_end, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
steps_offset=1, |
|
) |
|
else: |
|
raise ValueError(f"Scheduler of type {args.scheduler_type} doesn't exist!") |
|
|
|
|
|
if args.unet_checkpoint_path is not None: |
|
|
|
image_unet_config = create_image_unet_diffusers_config(IMAGE_UNET_CONFIG) |
|
checkpoint = torch.load(args.unet_checkpoint_path) |
|
converted_image_unet_checkpoint = convert_vd_unet_checkpoint( |
|
checkpoint, image_unet_config, unet_key="model.diffusion_model.unet_image.", extract_ema=args.extract_ema |
|
) |
|
image_unet = UNet2DConditionModel(**image_unet_config) |
|
image_unet.load_state_dict(converted_image_unet_checkpoint) |
|
|
|
|
|
text_unet_config = create_text_unet_diffusers_config(TEXT_UNET_CONFIG) |
|
converted_text_unet_checkpoint = convert_vd_unet_checkpoint( |
|
checkpoint, text_unet_config, unet_key="model.diffusion_model.unet_text.", extract_ema=args.extract_ema |
|
) |
|
text_unet = UNetFlatConditionModel(**text_unet_config) |
|
text_unet.load_state_dict(converted_text_unet_checkpoint) |
|
|
|
|
|
if args.vae_checkpoint_path is not None: |
|
vae_config = create_vae_diffusers_config(AUTOENCODER_CONFIG) |
|
checkpoint = torch.load(args.vae_checkpoint_path) |
|
converted_vae_checkpoint = convert_vd_vae_checkpoint(checkpoint, vae_config) |
|
|
|
vae = AutoencoderKL(**vae_config) |
|
vae.load_state_dict(converted_vae_checkpoint) |
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") |
|
image_feature_extractor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14") |
|
text_encoder = CLIPTextModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") |
|
image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") |
|
|
|
pipe = VersatileDiffusionPipeline( |
|
scheduler=scheduler, |
|
tokenizer=tokenizer, |
|
image_feature_extractor=image_feature_extractor, |
|
text_encoder=text_encoder, |
|
image_encoder=image_encoder, |
|
image_unet=image_unet, |
|
text_unet=text_unet, |
|
vae=vae, |
|
) |
|
pipe.save_pretrained(args.dump_path) |
|
|