|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
from pathlib import Path |
|
|
|
import torch |
|
from packaging import version |
|
from torch.onnx import export |
|
|
|
from diffusers import AutoencoderKL |
|
|
|
|
|
is_torch_less_than_1_11 = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") |
|
|
|
|
|
def onnx_export( |
|
model, |
|
model_args: tuple, |
|
output_path: Path, |
|
ordered_input_names, |
|
output_names, |
|
dynamic_axes, |
|
opset, |
|
use_external_data_format=False, |
|
): |
|
output_path.parent.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
if is_torch_less_than_1_11: |
|
export( |
|
model, |
|
model_args, |
|
f=output_path.as_posix(), |
|
input_names=ordered_input_names, |
|
output_names=output_names, |
|
dynamic_axes=dynamic_axes, |
|
do_constant_folding=True, |
|
use_external_data_format=use_external_data_format, |
|
enable_onnx_checker=True, |
|
opset_version=opset, |
|
) |
|
else: |
|
export( |
|
model, |
|
model_args, |
|
f=output_path.as_posix(), |
|
input_names=ordered_input_names, |
|
output_names=output_names, |
|
dynamic_axes=dynamic_axes, |
|
do_constant_folding=True, |
|
opset_version=opset, |
|
) |
|
|
|
|
|
@torch.no_grad() |
|
def convert_models(model_path: str, output_path: str, opset: int, fp16: bool = False): |
|
dtype = torch.float16 if fp16 else torch.float32 |
|
if fp16 and torch.cuda.is_available(): |
|
device = "cuda" |
|
elif fp16 and not torch.cuda.is_available(): |
|
raise ValueError("`float16` model export is only supported on GPUs with CUDA") |
|
else: |
|
device = "cpu" |
|
output_path = Path(output_path) |
|
|
|
|
|
vae_decoder = AutoencoderKL.from_pretrained(model_path + "/vae") |
|
vae_latent_channels = vae_decoder.config.latent_channels |
|
|
|
vae_decoder.forward = vae_decoder.decode |
|
onnx_export( |
|
vae_decoder, |
|
model_args=( |
|
torch.randn(1, vae_latent_channels, 25, 25).to(device=device, dtype=dtype), |
|
False, |
|
), |
|
output_path=output_path / "vae_decoder" / "model.onnx", |
|
ordered_input_names=["latent_sample", "return_dict"], |
|
output_names=["sample"], |
|
dynamic_axes={ |
|
"latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, |
|
}, |
|
opset=opset, |
|
) |
|
del vae_decoder |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--model_path", |
|
type=str, |
|
required=True, |
|
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", |
|
) |
|
|
|
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") |
|
parser.add_argument( |
|
"--opset", |
|
default=14, |
|
type=int, |
|
help="The version of the ONNX operator set to use.", |
|
) |
|
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") |
|
|
|
args = parser.parse_args() |
|
print(args.output_path) |
|
convert_models(args.model_path, args.output_path, args.opset, args.fp16) |
|
print("SD: Done: ONNX") |
|
|