|
import argparse |
|
import sys |
|
|
|
import tensorrt as trt |
|
|
|
|
|
def convert_models(onnx_path: str, num_controlnet: int, output_path: str, fp16: bool = False, sd_xl: bool = False): |
|
""" |
|
Function to convert models in stable diffusion controlnet pipeline into TensorRT format |
|
|
|
Example: |
|
python convert_stable_diffusion_controlnet_to_tensorrt.py |
|
--onnx_path path-to-models-stable_diffusion/RevAnimated-v1-2-2/unet/model.onnx |
|
--output_path path-to-models-stable_diffusion/RevAnimated-v1-2-2/unet/model.engine |
|
--fp16 |
|
--num_controlnet 2 |
|
|
|
Example for SD XL: |
|
python convert_stable_diffusion_controlnet_to_tensorrt.py |
|
--onnx_path path-to-models-stable_diffusion/stable-diffusion-xl-base-1.0/unet/model.onnx |
|
--output_path path-to-models-stable_diffusion/stable-diffusion-xl-base-1.0/unet/model.engine |
|
--fp16 |
|
--num_controlnet 1 |
|
--sd_xl |
|
|
|
Returns: |
|
unet/model.engine |
|
|
|
run test script in diffusers/examples/community |
|
python test_onnx_controlnet.py |
|
--sd_model danbrown/RevAnimated-v1-2-2 |
|
--onnx_model_dir path-to-models-stable_diffusion/RevAnimated-v1-2-2 |
|
--unet_engine_path path-to-models-stable_diffusion/stable-diffusion-xl-base-1.0/unet/model.engine |
|
--qr_img_path path-to-qr-code-image |
|
""" |
|
|
|
if sd_xl: |
|
batch_size = 1 |
|
unet_in_channels = 4 |
|
unet_sample_size = 64 |
|
num_tokens = 77 |
|
text_hidden_size = 2048 |
|
img_size = 512 |
|
|
|
text_embeds_shape = (2 * batch_size, 1280) |
|
time_ids_shape = (2 * batch_size, 6) |
|
else: |
|
batch_size = 1 |
|
unet_in_channels = 4 |
|
unet_sample_size = 64 |
|
num_tokens = 77 |
|
text_hidden_size = 768 |
|
img_size = 512 |
|
batch_size = 1 |
|
|
|
latents_shape = (2 * batch_size, unet_in_channels, unet_sample_size, unet_sample_size) |
|
embed_shape = (2 * batch_size, num_tokens, text_hidden_size) |
|
controlnet_conds_shape = (num_controlnet, 2 * batch_size, 3, img_size, img_size) |
|
|
|
TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE) |
|
TRT_BUILDER = trt.Builder(TRT_LOGGER) |
|
TRT_RUNTIME = trt.Runtime(TRT_LOGGER) |
|
|
|
network = TRT_BUILDER.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) |
|
onnx_parser = trt.OnnxParser(network, TRT_LOGGER) |
|
|
|
parse_success = onnx_parser.parse_from_file(onnx_path) |
|
for idx in range(onnx_parser.num_errors): |
|
print(onnx_parser.get_error(idx)) |
|
if not parse_success: |
|
sys.exit("ONNX model parsing failed") |
|
print("Load Onnx model done") |
|
|
|
profile = TRT_BUILDER.create_optimization_profile() |
|
|
|
profile.set_shape("sample", latents_shape, latents_shape, latents_shape) |
|
profile.set_shape("encoder_hidden_states", embed_shape, embed_shape, embed_shape) |
|
profile.set_shape("controlnet_conds", controlnet_conds_shape, controlnet_conds_shape, controlnet_conds_shape) |
|
if sd_xl: |
|
profile.set_shape("text_embeds", text_embeds_shape, text_embeds_shape, text_embeds_shape) |
|
profile.set_shape("time_ids", time_ids_shape, time_ids_shape, time_ids_shape) |
|
|
|
config = TRT_BUILDER.create_builder_config() |
|
config.add_optimization_profile(profile) |
|
config.set_preview_feature(trt.PreviewFeature.DISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805, True) |
|
if fp16: |
|
config.set_flag(trt.BuilderFlag.FP16) |
|
|
|
plan = TRT_BUILDER.build_serialized_network(network, config) |
|
if plan is None: |
|
sys.exit("Failed building engine") |
|
print("Succeeded building engine") |
|
|
|
engine = TRT_RUNTIME.deserialize_cuda_engine(plan) |
|
|
|
|
|
with open(output_path, "wb") as f: |
|
f.write(engine.serialize()) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument("--sd_xl", action="store_true", default=False, help="SD XL pipeline") |
|
|
|
parser.add_argument( |
|
"--onnx_path", |
|
type=str, |
|
required=True, |
|
help="Path to the onnx checkpoint to convert", |
|
) |
|
|
|
parser.add_argument("--num_controlnet", type=int) |
|
|
|
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") |
|
|
|
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") |
|
|
|
args = parser.parse_args() |
|
|
|
convert_models(args.onnx_path, args.num_controlnet, args.output_path, args.fp16, args.sd_xl) |
|
|