|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import os |
|
import shutil |
|
from pathlib import Path |
|
|
|
import onnx |
|
import torch |
|
from packaging import version |
|
from torch.onnx import export |
|
|
|
from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline |
|
|
|
|
|
is_torch_less_than_1_11 = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") |
|
|
|
|
|
def onnx_export( |
|
model, |
|
model_args: tuple, |
|
output_path: Path, |
|
ordered_input_names, |
|
output_names, |
|
dynamic_axes, |
|
opset, |
|
use_external_data_format=False, |
|
): |
|
output_path.parent.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
if is_torch_less_than_1_11: |
|
export( |
|
model, |
|
model_args, |
|
f=output_path.as_posix(), |
|
input_names=ordered_input_names, |
|
output_names=output_names, |
|
dynamic_axes=dynamic_axes, |
|
do_constant_folding=True, |
|
use_external_data_format=use_external_data_format, |
|
enable_onnx_checker=True, |
|
opset_version=opset, |
|
) |
|
else: |
|
export( |
|
model, |
|
model_args, |
|
f=output_path.as_posix(), |
|
input_names=ordered_input_names, |
|
output_names=output_names, |
|
dynamic_axes=dynamic_axes, |
|
do_constant_folding=True, |
|
opset_version=opset, |
|
) |
|
|
|
|
|
@torch.no_grad() |
|
def convert_models(model_path: str, output_path: str, opset: int, fp16: bool = False): |
|
dtype = torch.float16 if fp16 else torch.float32 |
|
if fp16 and torch.cuda.is_available(): |
|
device = "cuda" |
|
elif fp16 and not torch.cuda.is_available(): |
|
raise ValueError("`float16` model export is only supported on GPUs with CUDA") |
|
else: |
|
device = "cpu" |
|
pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=dtype).to(device) |
|
output_path = Path(output_path) |
|
|
|
|
|
num_tokens = pipeline.text_encoder.config.max_position_embeddings |
|
text_hidden_size = pipeline.text_encoder.config.hidden_size |
|
text_input = pipeline.tokenizer( |
|
"A sample prompt", |
|
padding="max_length", |
|
max_length=pipeline.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
onnx_export( |
|
pipeline.text_encoder, |
|
|
|
model_args=(text_input.input_ids.to(device=device, dtype=torch.int32)), |
|
output_path=output_path / "text_encoder" / "model.onnx", |
|
ordered_input_names=["input_ids"], |
|
output_names=["last_hidden_state", "pooler_output"], |
|
dynamic_axes={ |
|
"input_ids": {0: "batch", 1: "sequence"}, |
|
}, |
|
opset=opset, |
|
) |
|
del pipeline.text_encoder |
|
|
|
|
|
unet_in_channels = pipeline.unet.config.in_channels |
|
unet_sample_size = pipeline.unet.config.sample_size |
|
unet_path = output_path / "unet" / "model.onnx" |
|
onnx_export( |
|
pipeline.unet, |
|
model_args=( |
|
torch.randn(2, unet_in_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype), |
|
torch.randn(2).to(device=device, dtype=dtype), |
|
torch.randn(2, num_tokens, text_hidden_size).to(device=device, dtype=dtype), |
|
False, |
|
), |
|
output_path=unet_path, |
|
ordered_input_names=["sample", "timestep", "encoder_hidden_states", "return_dict"], |
|
output_names=["out_sample"], |
|
dynamic_axes={ |
|
"sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, |
|
"timestep": {0: "batch"}, |
|
"encoder_hidden_states": {0: "batch", 1: "sequence"}, |
|
}, |
|
opset=opset, |
|
use_external_data_format=True, |
|
) |
|
unet_model_path = str(unet_path.absolute().as_posix()) |
|
unet_dir = os.path.dirname(unet_model_path) |
|
unet = onnx.load(unet_model_path) |
|
|
|
shutil.rmtree(unet_dir) |
|
os.mkdir(unet_dir) |
|
|
|
onnx.save_model( |
|
unet, |
|
unet_model_path, |
|
save_as_external_data=True, |
|
all_tensors_to_one_file=True, |
|
location="weights.pb", |
|
convert_attribute=False, |
|
) |
|
del pipeline.unet |
|
|
|
|
|
vae_encoder = pipeline.vae |
|
vae_in_channels = vae_encoder.config.in_channels |
|
vae_sample_size = vae_encoder.config.sample_size |
|
|
|
vae_encoder.forward = lambda sample, return_dict: vae_encoder.encode(sample, return_dict)[0].sample() |
|
onnx_export( |
|
vae_encoder, |
|
model_args=( |
|
torch.randn(1, vae_in_channels, vae_sample_size, vae_sample_size).to(device=device, dtype=dtype), |
|
False, |
|
), |
|
output_path=output_path / "vae_encoder" / "model.onnx", |
|
ordered_input_names=["sample", "return_dict"], |
|
output_names=["latent_sample"], |
|
dynamic_axes={ |
|
"sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, |
|
}, |
|
opset=opset, |
|
) |
|
|
|
|
|
vae_decoder = pipeline.vae |
|
vae_latent_channels = vae_decoder.config.latent_channels |
|
vae_out_channels = vae_decoder.config.out_channels |
|
|
|
vae_decoder.forward = vae_encoder.decode |
|
onnx_export( |
|
vae_decoder, |
|
model_args=( |
|
torch.randn(1, vae_latent_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype), |
|
False, |
|
), |
|
output_path=output_path / "vae_decoder" / "model.onnx", |
|
ordered_input_names=["latent_sample", "return_dict"], |
|
output_names=["sample"], |
|
dynamic_axes={ |
|
"latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, |
|
}, |
|
opset=opset, |
|
) |
|
del pipeline.vae |
|
|
|
|
|
if pipeline.safety_checker is not None: |
|
safety_checker = pipeline.safety_checker |
|
clip_num_channels = safety_checker.config.vision_config.num_channels |
|
clip_image_size = safety_checker.config.vision_config.image_size |
|
safety_checker.forward = safety_checker.forward_onnx |
|
onnx_export( |
|
pipeline.safety_checker, |
|
model_args=( |
|
torch.randn( |
|
1, |
|
clip_num_channels, |
|
clip_image_size, |
|
clip_image_size, |
|
).to(device=device, dtype=dtype), |
|
torch.randn(1, vae_sample_size, vae_sample_size, vae_out_channels).to(device=device, dtype=dtype), |
|
), |
|
output_path=output_path / "safety_checker" / "model.onnx", |
|
ordered_input_names=["clip_input", "images"], |
|
output_names=["out_images", "has_nsfw_concepts"], |
|
dynamic_axes={ |
|
"clip_input": {0: "batch", 1: "channels", 2: "height", 3: "width"}, |
|
"images": {0: "batch", 1: "height", 2: "width", 3: "channels"}, |
|
}, |
|
opset=opset, |
|
) |
|
del pipeline.safety_checker |
|
safety_checker = OnnxRuntimeModel.from_pretrained(output_path / "safety_checker") |
|
feature_extractor = pipeline.feature_extractor |
|
else: |
|
safety_checker = None |
|
feature_extractor = None |
|
|
|
onnx_pipeline = OnnxStableDiffusionPipeline( |
|
vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_encoder"), |
|
vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_decoder"), |
|
text_encoder=OnnxRuntimeModel.from_pretrained(output_path / "text_encoder"), |
|
tokenizer=pipeline.tokenizer, |
|
unet=OnnxRuntimeModel.from_pretrained(output_path / "unet"), |
|
scheduler=pipeline.scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
requires_safety_checker=safety_checker is not None, |
|
) |
|
|
|
onnx_pipeline.save_pretrained(output_path) |
|
print("ONNX pipeline saved to", output_path) |
|
|
|
del pipeline |
|
del onnx_pipeline |
|
_ = OnnxStableDiffusionPipeline.from_pretrained(output_path, provider="CPUExecutionProvider") |
|
print("ONNX pipeline is loadable") |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--model_path", |
|
type=str, |
|
required=True, |
|
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", |
|
) |
|
|
|
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") |
|
|
|
parser.add_argument( |
|
"--opset", |
|
default=14, |
|
type=int, |
|
help="The version of the ONNX operator set to use.", |
|
) |
|
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") |
|
|
|
args = parser.parse_args() |
|
|
|
convert_models(args.model_path, args.output_path, args.opset, args.fp16) |
|
|