|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Conversion script for the LDM checkpoints.""" |
|
|
|
import argparse |
|
import json |
|
|
|
import torch |
|
|
|
from diffusers import DDPMScheduler, LDMPipeline, UNet2DModel, VQModel |
|
|
|
|
|
def shave_segments(path, n_shave_prefix_segments=1): |
|
""" |
|
Removes segments. Positive values shave the first segments, negative shave the last segments. |
|
""" |
|
if n_shave_prefix_segments >= 0: |
|
return ".".join(path.split(".")[n_shave_prefix_segments:]) |
|
else: |
|
return ".".join(path.split(".")[:n_shave_prefix_segments]) |
|
|
|
|
|
def renew_resnet_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside resnets to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item.replace("in_layers.0", "norm1") |
|
new_item = new_item.replace("in_layers.2", "conv1") |
|
|
|
new_item = new_item.replace("out_layers.0", "norm2") |
|
new_item = new_item.replace("out_layers.3", "conv2") |
|
|
|
new_item = new_item.replace("emb_layers.1", "time_emb_proj") |
|
new_item = new_item.replace("skip_connection", "conv_shortcut") |
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) |
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def renew_attention_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside attentions to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
|
|
new_item = new_item.replace("norm.weight", "group_norm.weight") |
|
new_item = new_item.replace("norm.bias", "group_norm.bias") |
|
|
|
new_item = new_item.replace("proj_out.weight", "proj_attn.weight") |
|
new_item = new_item.replace("proj_out.bias", "proj_attn.bias") |
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) |
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def assign_to_checkpoint( |
|
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None |
|
): |
|
""" |
|
This does the final conversion step: take locally converted weights and apply a global renaming |
|
to them. It splits attention layers, and takes into account additional replacements |
|
that may arise. |
|
|
|
Assigns the weights to the new checkpoint. |
|
""" |
|
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." |
|
|
|
|
|
if attention_paths_to_split is not None: |
|
for path, path_map in attention_paths_to_split.items(): |
|
old_tensor = old_checkpoint[path] |
|
channels = old_tensor.shape[0] // 3 |
|
|
|
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) |
|
|
|
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 |
|
|
|
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) |
|
query, key, value = old_tensor.split(channels // num_heads, dim=1) |
|
|
|
checkpoint[path_map["query"]] = query.reshape(target_shape) |
|
checkpoint[path_map["key"]] = key.reshape(target_shape) |
|
checkpoint[path_map["value"]] = value.reshape(target_shape) |
|
|
|
for path in paths: |
|
new_path = path["new"] |
|
|
|
|
|
if attention_paths_to_split is not None and new_path in attention_paths_to_split: |
|
continue |
|
|
|
|
|
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") |
|
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") |
|
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") |
|
|
|
if additional_replacements is not None: |
|
for replacement in additional_replacements: |
|
new_path = new_path.replace(replacement["old"], replacement["new"]) |
|
|
|
|
|
if "proj_attn.weight" in new_path: |
|
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] |
|
else: |
|
checkpoint[new_path] = old_checkpoint[path["old"]] |
|
|
|
|
|
def convert_ldm_checkpoint(checkpoint, config): |
|
""" |
|
Takes a state dict and a config, and returns a converted checkpoint. |
|
""" |
|
new_checkpoint = {} |
|
|
|
new_checkpoint["time_embedding.linear_1.weight"] = checkpoint["time_embed.0.weight"] |
|
new_checkpoint["time_embedding.linear_1.bias"] = checkpoint["time_embed.0.bias"] |
|
new_checkpoint["time_embedding.linear_2.weight"] = checkpoint["time_embed.2.weight"] |
|
new_checkpoint["time_embedding.linear_2.bias"] = checkpoint["time_embed.2.bias"] |
|
|
|
new_checkpoint["conv_in.weight"] = checkpoint["input_blocks.0.0.weight"] |
|
new_checkpoint["conv_in.bias"] = checkpoint["input_blocks.0.0.bias"] |
|
|
|
new_checkpoint["conv_norm_out.weight"] = checkpoint["out.0.weight"] |
|
new_checkpoint["conv_norm_out.bias"] = checkpoint["out.0.bias"] |
|
new_checkpoint["conv_out.weight"] = checkpoint["out.2.weight"] |
|
new_checkpoint["conv_out.bias"] = checkpoint["out.2.bias"] |
|
|
|
|
|
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in checkpoint if "input_blocks" in layer}) |
|
input_blocks = { |
|
layer_id: [key for key in checkpoint if f"input_blocks.{layer_id}" in key] |
|
for layer_id in range(num_input_blocks) |
|
} |
|
|
|
|
|
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in checkpoint if "middle_block" in layer}) |
|
middle_blocks = { |
|
layer_id: [key for key in checkpoint if f"middle_block.{layer_id}" in key] |
|
for layer_id in range(num_middle_blocks) |
|
} |
|
|
|
|
|
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in checkpoint if "output_blocks" in layer}) |
|
output_blocks = { |
|
layer_id: [key for key in checkpoint if f"output_blocks.{layer_id}" in key] |
|
for layer_id in range(num_output_blocks) |
|
} |
|
|
|
for i in range(1, num_input_blocks): |
|
block_id = (i - 1) // (config["num_res_blocks"] + 1) |
|
layer_in_block_id = (i - 1) % (config["num_res_blocks"] + 1) |
|
|
|
resnets = [key for key in input_blocks[i] if f"input_blocks.{i}.0" in key] |
|
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] |
|
|
|
if f"input_blocks.{i}.0.op.weight" in checkpoint: |
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = checkpoint[ |
|
f"input_blocks.{i}.0.op.weight" |
|
] |
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = checkpoint[ |
|
f"input_blocks.{i}.0.op.bias" |
|
] |
|
continue |
|
|
|
paths = renew_resnet_paths(resnets) |
|
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} |
|
resnet_op = {"old": "resnets.2.op", "new": "downsamplers.0.op"} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, checkpoint, additional_replacements=[meta_path, resnet_op], config=config |
|
) |
|
|
|
if len(attentions): |
|
paths = renew_attention_paths(attentions) |
|
meta_path = { |
|
"old": f"input_blocks.{i}.1", |
|
"new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}", |
|
} |
|
to_split = { |
|
f"input_blocks.{i}.1.qkv.bias": { |
|
"key": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", |
|
"query": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", |
|
"value": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", |
|
}, |
|
f"input_blocks.{i}.1.qkv.weight": { |
|
"key": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", |
|
"query": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", |
|
"value": f"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", |
|
}, |
|
} |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
checkpoint, |
|
additional_replacements=[meta_path], |
|
attention_paths_to_split=to_split, |
|
config=config, |
|
) |
|
|
|
resnet_0 = middle_blocks[0] |
|
attentions = middle_blocks[1] |
|
resnet_1 = middle_blocks[2] |
|
|
|
resnet_0_paths = renew_resnet_paths(resnet_0) |
|
assign_to_checkpoint(resnet_0_paths, new_checkpoint, checkpoint, config=config) |
|
|
|
resnet_1_paths = renew_resnet_paths(resnet_1) |
|
assign_to_checkpoint(resnet_1_paths, new_checkpoint, checkpoint, config=config) |
|
|
|
attentions_paths = renew_attention_paths(attentions) |
|
to_split = { |
|
"middle_block.1.qkv.bias": { |
|
"key": "mid_block.attentions.0.key.bias", |
|
"query": "mid_block.attentions.0.query.bias", |
|
"value": "mid_block.attentions.0.value.bias", |
|
}, |
|
"middle_block.1.qkv.weight": { |
|
"key": "mid_block.attentions.0.key.weight", |
|
"query": "mid_block.attentions.0.query.weight", |
|
"value": "mid_block.attentions.0.value.weight", |
|
}, |
|
} |
|
assign_to_checkpoint( |
|
attentions_paths, new_checkpoint, checkpoint, attention_paths_to_split=to_split, config=config |
|
) |
|
|
|
for i in range(num_output_blocks): |
|
block_id = i // (config["num_res_blocks"] + 1) |
|
layer_in_block_id = i % (config["num_res_blocks"] + 1) |
|
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] |
|
output_block_list = {} |
|
|
|
for layer in output_block_layers: |
|
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) |
|
if layer_id in output_block_list: |
|
output_block_list[layer_id].append(layer_name) |
|
else: |
|
output_block_list[layer_id] = [layer_name] |
|
|
|
if len(output_block_list) > 1: |
|
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] |
|
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] |
|
|
|
resnet_0_paths = renew_resnet_paths(resnets) |
|
paths = renew_resnet_paths(resnets) |
|
|
|
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} |
|
assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[meta_path], config=config) |
|
|
|
if ["conv.weight", "conv.bias"] in output_block_list.values(): |
|
index = list(output_block_list.values()).index(["conv.weight", "conv.bias"]) |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = checkpoint[ |
|
f"output_blocks.{i}.{index}.conv.weight" |
|
] |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = checkpoint[ |
|
f"output_blocks.{i}.{index}.conv.bias" |
|
] |
|
|
|
|
|
if len(attentions) == 2: |
|
attentions = [] |
|
|
|
if len(attentions): |
|
paths = renew_attention_paths(attentions) |
|
meta_path = { |
|
"old": f"output_blocks.{i}.1", |
|
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", |
|
} |
|
to_split = { |
|
f"output_blocks.{i}.1.qkv.bias": { |
|
"key": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", |
|
"query": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", |
|
"value": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", |
|
}, |
|
f"output_blocks.{i}.1.qkv.weight": { |
|
"key": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", |
|
"query": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", |
|
"value": f"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", |
|
}, |
|
} |
|
assign_to_checkpoint( |
|
paths, |
|
new_checkpoint, |
|
checkpoint, |
|
additional_replacements=[meta_path], |
|
attention_paths_to_split=to_split if any("qkv" in key for key in attentions) else None, |
|
config=config, |
|
) |
|
else: |
|
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) |
|
for path in resnet_0_paths: |
|
old_path = ".".join(["output_blocks", str(i), path["old"]]) |
|
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) |
|
|
|
new_checkpoint[new_path] = checkpoint[old_path] |
|
|
|
return new_checkpoint |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." |
|
) |
|
|
|
parser.add_argument( |
|
"--config_file", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="The config json file corresponding to the architecture.", |
|
) |
|
|
|
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") |
|
|
|
args = parser.parse_args() |
|
|
|
checkpoint = torch.load(args.checkpoint_path) |
|
|
|
with open(args.config_file) as f: |
|
config = json.loads(f.read()) |
|
|
|
converted_checkpoint = convert_ldm_checkpoint(checkpoint, config) |
|
|
|
if "ldm" in config: |
|
del config["ldm"] |
|
|
|
model = UNet2DModel(**config) |
|
model.load_state_dict(converted_checkpoint) |
|
|
|
try: |
|
scheduler = DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1])) |
|
vqvae = VQModel.from_pretrained("/".join(args.checkpoint_path.split("/")[:-1])) |
|
|
|
pipe = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) |
|
pipe.save_pretrained(args.dump_path) |
|
except: |
|
model.save_pretrained(args.dump_path) |
|
|