|
|
|
import argparse |
|
import fnmatch |
|
|
|
from safetensors.torch import load_file |
|
|
|
from diffusers import Kandinsky3UNet |
|
|
|
|
|
MAPPING = { |
|
"to_time_embed.1": "time_embedding.linear_1", |
|
"to_time_embed.3": "time_embedding.linear_2", |
|
"in_layer": "conv_in", |
|
"out_layer.0": "conv_norm_out", |
|
"out_layer.2": "conv_out", |
|
"down_samples": "down_blocks", |
|
"up_samples": "up_blocks", |
|
"projection_lin": "encoder_hid_proj.projection_linear", |
|
"projection_ln": "encoder_hid_proj.projection_norm", |
|
"feature_pooling": "add_time_condition", |
|
"to_query": "to_q", |
|
"to_key": "to_k", |
|
"to_value": "to_v", |
|
"output_layer": "to_out.0", |
|
"self_attention_block": "attentions.0", |
|
} |
|
|
|
DYNAMIC_MAP = { |
|
"resnet_attn_blocks.*.0": "resnets_in.*", |
|
"resnet_attn_blocks.*.1": ("attentions.*", 1), |
|
"resnet_attn_blocks.*.2": "resnets_out.*", |
|
} |
|
|
|
|
|
|
|
def convert_state_dict(unet_state_dict): |
|
""" |
|
Convert the state dict of a U-Net model to match the key format expected by Kandinsky3UNet model. |
|
Args: |
|
unet_model (torch.nn.Module): The original U-Net model. |
|
unet_kandi3_model (torch.nn.Module): The Kandinsky3UNet model to match keys with. |
|
|
|
Returns: |
|
OrderedDict: The converted state dictionary. |
|
""" |
|
|
|
converted_state_dict = {} |
|
for key in unet_state_dict: |
|
new_key = key |
|
for pattern, new_pattern in MAPPING.items(): |
|
new_key = new_key.replace(pattern, new_pattern) |
|
|
|
for dyn_pattern, dyn_new_pattern in DYNAMIC_MAP.items(): |
|
has_matched = False |
|
if fnmatch.fnmatch(new_key, f"*.{dyn_pattern}.*") and not has_matched: |
|
star = int(new_key.split(dyn_pattern.split(".")[0])[-1].split(".")[1]) |
|
|
|
if isinstance(dyn_new_pattern, tuple): |
|
new_star = star + dyn_new_pattern[-1] |
|
dyn_new_pattern = dyn_new_pattern[0] |
|
else: |
|
new_star = star |
|
|
|
pattern = dyn_pattern.replace("*", str(star)) |
|
new_pattern = dyn_new_pattern.replace("*", str(new_star)) |
|
|
|
new_key = new_key.replace(pattern, new_pattern) |
|
has_matched = True |
|
|
|
converted_state_dict[new_key] = unet_state_dict[key] |
|
|
|
return converted_state_dict |
|
|
|
|
|
def main(model_path, output_path): |
|
|
|
unet_state_dict = load_file(model_path) |
|
|
|
|
|
config = {} |
|
|
|
|
|
converted_state_dict = convert_state_dict(unet_state_dict) |
|
|
|
unet = Kandinsky3UNet(config) |
|
unet.load_state_dict(converted_state_dict) |
|
|
|
unet.save_pretrained(output_path) |
|
print(f"Converted model saved to {output_path}") |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Convert U-Net PyTorch model to Kandinsky3UNet format") |
|
parser.add_argument("--model_path", type=str, required=True, help="Path to the original U-Net PyTorch model") |
|
parser.add_argument("--output_path", type=str, required=True, help="Path to save the converted model") |
|
|
|
args = parser.parse_args() |
|
main(args.model_path, args.output_path) |
|
|