# Script for converting a Hugging Face Diffusers trained SDXL LoRAs to Kohya format | |
# This means that you can input your diffusers-trained LoRAs and | |
# Get the output to work with WebUIs such as AUTOMATIC1111, ComfyUI, SD.Next and others. | |
# To get started you can find some cool `diffusers` trained LoRAs such as this cute Corgy | |
# https://huggingface.co/ignasbud/corgy_dog_LoRA/, download its `pytorch_lora_weights.safetensors` file | |
# and run the script: | |
# python convert_diffusers_sdxl_lora_to_webui.py --input_lora pytorch_lora_weights.safetensors --output_lora corgy.safetensors | |
# now you can use corgy.safetensors in your WebUI of choice! | |
# To train your own, here are some diffusers training scripts and utils that you can use and then convert: | |
# LoRA Ease - no code SDXL Dreambooth LoRA trainer: https://huggingface.co/spaces/multimodalart/lora-ease | |
# Dreambooth Advanced Training Script - state of the art techniques such as pivotal tuning and prodigy optimizer: | |
# - Script: https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py | |
# - Colab (only on Pro): https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/SDXL_Dreambooth_LoRA_advanced_example.ipynb | |
# Canonical diffusers training scripts: | |
# - Script: https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth_lora_sdxl.py | |
# - Colab (runs on free tier): https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/SDXL_DreamBooth_LoRA_.ipynb | |
import argparse | |
import os | |
from safetensors.torch import load_file, save_file | |
from diffusers.utils import convert_all_state_dict_to_peft, convert_state_dict_to_kohya | |
def convert_and_save(input_lora, output_lora=None): | |
if output_lora is None: | |
base_name = os.path.splitext(input_lora)[0] | |
output_lora = f"{base_name}_webui.safetensors" | |
diffusers_state_dict = load_file(input_lora) | |
peft_state_dict = convert_all_state_dict_to_peft(diffusers_state_dict) | |
kohya_state_dict = convert_state_dict_to_kohya(peft_state_dict) | |
save_file(kohya_state_dict, output_lora) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Convert LoRA model to PEFT and then to Kohya format.") | |
parser.add_argument( | |
"--input_lora", | |
type=str, | |
required=True, | |
help="Path to the input LoRA model file in the diffusers format.", | |
) | |
parser.add_argument( | |
"--output_lora", | |
type=str, | |
required=False, | |
help="Path for the converted LoRA (safetensors format for AUTOMATIC1111, ComfyUI, etc.). Optional, defaults to input name with a _webui suffix.", | |
) | |
args = parser.parse_args() | |
convert_and_save(args.input_lora, args.output_lora) | |