|
import inspect |
|
import os |
|
from argparse import ArgumentParser |
|
|
|
import numpy as np |
|
import torch |
|
from muse import MaskGiTUViT, VQGANModel |
|
from muse import PipelineMuse as OldPipelineMuse |
|
from transformers import CLIPTextModelWithProjection, CLIPTokenizer |
|
|
|
from diffusers import VQModel |
|
from diffusers.models.attention_processor import AttnProcessor |
|
from diffusers.models.unets.uvit_2d import UVit2DModel |
|
from diffusers.pipelines.amused.pipeline_amused import AmusedPipeline |
|
from diffusers.schedulers import AmusedScheduler |
|
|
|
|
|
torch.backends.cuda.enable_flash_sdp(False) |
|
torch.backends.cuda.enable_mem_efficient_sdp(False) |
|
torch.backends.cuda.enable_math_sdp(True) |
|
|
|
os.environ["CUDA_LAUNCH_BLOCKING"] = "1" |
|
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8" |
|
torch.use_deterministic_algorithms(True) |
|
|
|
|
|
torch.backends.cudnn.deterministic = True |
|
torch.backends.cudnn.benchmark = False |
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
|
|
device = "cuda" |
|
|
|
|
|
def main(): |
|
args = ArgumentParser() |
|
args.add_argument("--model_256", action="store_true") |
|
args.add_argument("--write_to", type=str, required=False, default=None) |
|
args.add_argument("--transformer_path", type=str, required=False, default=None) |
|
args = args.parse_args() |
|
|
|
transformer_path = args.transformer_path |
|
subfolder = "transformer" |
|
|
|
if transformer_path is None: |
|
if args.model_256: |
|
transformer_path = "openMUSE/muse-256" |
|
else: |
|
transformer_path = ( |
|
"../research-run-512-checkpoints/research-run-512-with-downsample-checkpoint-554000/unwrapped_model/" |
|
) |
|
subfolder = None |
|
|
|
old_transformer = MaskGiTUViT.from_pretrained(transformer_path, subfolder=subfolder) |
|
|
|
old_transformer.to(device) |
|
|
|
old_vae = VQGANModel.from_pretrained("openMUSE/muse-512", subfolder="vae") |
|
old_vae.to(device) |
|
|
|
vqvae = make_vqvae(old_vae) |
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("openMUSE/muse-512", subfolder="text_encoder") |
|
|
|
text_encoder = CLIPTextModelWithProjection.from_pretrained("openMUSE/muse-512", subfolder="text_encoder") |
|
text_encoder.to(device) |
|
|
|
transformer = make_transformer(old_transformer, args.model_256) |
|
|
|
scheduler = AmusedScheduler(mask_token_id=old_transformer.config.mask_token_id) |
|
|
|
new_pipe = AmusedPipeline( |
|
vqvae=vqvae, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, scheduler=scheduler |
|
) |
|
|
|
old_pipe = OldPipelineMuse( |
|
vae=old_vae, transformer=old_transformer, text_encoder=text_encoder, tokenizer=tokenizer |
|
) |
|
old_pipe.to(device) |
|
|
|
if args.model_256: |
|
transformer_seq_len = 256 |
|
orig_size = (256, 256) |
|
else: |
|
transformer_seq_len = 1024 |
|
orig_size = (512, 512) |
|
|
|
old_out = old_pipe( |
|
"dog", |
|
generator=torch.Generator(device).manual_seed(0), |
|
transformer_seq_len=transformer_seq_len, |
|
orig_size=orig_size, |
|
timesteps=12, |
|
)[0] |
|
|
|
new_out = new_pipe("dog", generator=torch.Generator(device).manual_seed(0)).images[0] |
|
|
|
old_out = np.array(old_out) |
|
new_out = np.array(new_out) |
|
|
|
diff = np.abs(old_out.astype(np.float64) - new_out.astype(np.float64)) |
|
|
|
|
|
print("skipping pipeline full equivalence check") |
|
|
|
print(f"max diff: {diff.max()}, diff.sum() / diff.size {diff.sum() / diff.size}") |
|
|
|
if args.model_256: |
|
assert diff.max() <= 3 |
|
assert diff.sum() / diff.size < 0.7 |
|
else: |
|
assert diff.max() <= 1 |
|
assert diff.sum() / diff.size < 0.4 |
|
|
|
if args.write_to is not None: |
|
new_pipe.save_pretrained(args.write_to) |
|
|
|
|
|
def make_transformer(old_transformer, model_256): |
|
args = dict(old_transformer.config) |
|
force_down_up_sample = args["force_down_up_sample"] |
|
|
|
signature = inspect.signature(UVit2DModel.__init__) |
|
|
|
args_ = { |
|
"downsample": force_down_up_sample, |
|
"upsample": force_down_up_sample, |
|
"block_out_channels": args["block_out_channels"][0], |
|
"sample_size": 16 if model_256 else 32, |
|
} |
|
|
|
for s in list(signature.parameters.keys()): |
|
if s in ["self", "downsample", "upsample", "sample_size", "block_out_channels"]: |
|
continue |
|
|
|
args_[s] = args[s] |
|
|
|
new_transformer = UVit2DModel(**args_) |
|
new_transformer.to(device) |
|
|
|
new_transformer.set_attn_processor(AttnProcessor()) |
|
|
|
state_dict = old_transformer.state_dict() |
|
|
|
state_dict["cond_embed.linear_1.weight"] = state_dict.pop("cond_embed.0.weight") |
|
state_dict["cond_embed.linear_2.weight"] = state_dict.pop("cond_embed.2.weight") |
|
|
|
for i in range(22): |
|
state_dict[f"transformer_layers.{i}.norm1.norm.weight"] = state_dict.pop( |
|
f"transformer_layers.{i}.attn_layer_norm.weight" |
|
) |
|
state_dict[f"transformer_layers.{i}.norm1.linear.weight"] = state_dict.pop( |
|
f"transformer_layers.{i}.self_attn_adaLN_modulation.mapper.weight" |
|
) |
|
|
|
state_dict[f"transformer_layers.{i}.attn1.to_q.weight"] = state_dict.pop( |
|
f"transformer_layers.{i}.attention.query.weight" |
|
) |
|
state_dict[f"transformer_layers.{i}.attn1.to_k.weight"] = state_dict.pop( |
|
f"transformer_layers.{i}.attention.key.weight" |
|
) |
|
state_dict[f"transformer_layers.{i}.attn1.to_v.weight"] = state_dict.pop( |
|
f"transformer_layers.{i}.attention.value.weight" |
|
) |
|
state_dict[f"transformer_layers.{i}.attn1.to_out.0.weight"] = state_dict.pop( |
|
f"transformer_layers.{i}.attention.out.weight" |
|
) |
|
|
|
state_dict[f"transformer_layers.{i}.norm2.norm.weight"] = state_dict.pop( |
|
f"transformer_layers.{i}.crossattn_layer_norm.weight" |
|
) |
|
state_dict[f"transformer_layers.{i}.norm2.linear.weight"] = state_dict.pop( |
|
f"transformer_layers.{i}.cross_attn_adaLN_modulation.mapper.weight" |
|
) |
|
|
|
state_dict[f"transformer_layers.{i}.attn2.to_q.weight"] = state_dict.pop( |
|
f"transformer_layers.{i}.crossattention.query.weight" |
|
) |
|
state_dict[f"transformer_layers.{i}.attn2.to_k.weight"] = state_dict.pop( |
|
f"transformer_layers.{i}.crossattention.key.weight" |
|
) |
|
state_dict[f"transformer_layers.{i}.attn2.to_v.weight"] = state_dict.pop( |
|
f"transformer_layers.{i}.crossattention.value.weight" |
|
) |
|
state_dict[f"transformer_layers.{i}.attn2.to_out.0.weight"] = state_dict.pop( |
|
f"transformer_layers.{i}.crossattention.out.weight" |
|
) |
|
|
|
state_dict[f"transformer_layers.{i}.norm3.norm.weight"] = state_dict.pop( |
|
f"transformer_layers.{i}.ffn.pre_mlp_layer_norm.weight" |
|
) |
|
state_dict[f"transformer_layers.{i}.norm3.linear.weight"] = state_dict.pop( |
|
f"transformer_layers.{i}.ffn.adaLN_modulation.mapper.weight" |
|
) |
|
|
|
wi_0_weight = state_dict.pop(f"transformer_layers.{i}.ffn.wi_0.weight") |
|
wi_1_weight = state_dict.pop(f"transformer_layers.{i}.ffn.wi_1.weight") |
|
proj_weight = torch.concat([wi_1_weight, wi_0_weight], dim=0) |
|
state_dict[f"transformer_layers.{i}.ff.net.0.proj.weight"] = proj_weight |
|
|
|
state_dict[f"transformer_layers.{i}.ff.net.2.weight"] = state_dict.pop(f"transformer_layers.{i}.ffn.wo.weight") |
|
|
|
if force_down_up_sample: |
|
state_dict["down_block.downsample.norm.weight"] = state_dict.pop("down_blocks.0.downsample.0.norm.weight") |
|
state_dict["down_block.downsample.conv.weight"] = state_dict.pop("down_blocks.0.downsample.1.weight") |
|
|
|
state_dict["up_block.upsample.norm.weight"] = state_dict.pop("up_blocks.0.upsample.0.norm.weight") |
|
state_dict["up_block.upsample.conv.weight"] = state_dict.pop("up_blocks.0.upsample.1.weight") |
|
|
|
state_dict["mlm_layer.layer_norm.weight"] = state_dict.pop("mlm_layer.layer_norm.norm.weight") |
|
|
|
for i in range(3): |
|
state_dict[f"down_block.res_blocks.{i}.norm.weight"] = state_dict.pop( |
|
f"down_blocks.0.res_blocks.{i}.norm.norm.weight" |
|
) |
|
state_dict[f"down_block.res_blocks.{i}.channelwise_linear_1.weight"] = state_dict.pop( |
|
f"down_blocks.0.res_blocks.{i}.channelwise.0.weight" |
|
) |
|
state_dict[f"down_block.res_blocks.{i}.channelwise_norm.gamma"] = state_dict.pop( |
|
f"down_blocks.0.res_blocks.{i}.channelwise.2.gamma" |
|
) |
|
state_dict[f"down_block.res_blocks.{i}.channelwise_norm.beta"] = state_dict.pop( |
|
f"down_blocks.0.res_blocks.{i}.channelwise.2.beta" |
|
) |
|
state_dict[f"down_block.res_blocks.{i}.channelwise_linear_2.weight"] = state_dict.pop( |
|
f"down_blocks.0.res_blocks.{i}.channelwise.4.weight" |
|
) |
|
state_dict[f"down_block.res_blocks.{i}.cond_embeds_mapper.weight"] = state_dict.pop( |
|
f"down_blocks.0.res_blocks.{i}.adaLN_modulation.mapper.weight" |
|
) |
|
|
|
state_dict[f"down_block.attention_blocks.{i}.norm1.weight"] = state_dict.pop( |
|
f"down_blocks.0.attention_blocks.{i}.attn_layer_norm.weight" |
|
) |
|
state_dict[f"down_block.attention_blocks.{i}.attn1.to_q.weight"] = state_dict.pop( |
|
f"down_blocks.0.attention_blocks.{i}.attention.query.weight" |
|
) |
|
state_dict[f"down_block.attention_blocks.{i}.attn1.to_k.weight"] = state_dict.pop( |
|
f"down_blocks.0.attention_blocks.{i}.attention.key.weight" |
|
) |
|
state_dict[f"down_block.attention_blocks.{i}.attn1.to_v.weight"] = state_dict.pop( |
|
f"down_blocks.0.attention_blocks.{i}.attention.value.weight" |
|
) |
|
state_dict[f"down_block.attention_blocks.{i}.attn1.to_out.0.weight"] = state_dict.pop( |
|
f"down_blocks.0.attention_blocks.{i}.attention.out.weight" |
|
) |
|
|
|
state_dict[f"down_block.attention_blocks.{i}.norm2.weight"] = state_dict.pop( |
|
f"down_blocks.0.attention_blocks.{i}.crossattn_layer_norm.weight" |
|
) |
|
state_dict[f"down_block.attention_blocks.{i}.attn2.to_q.weight"] = state_dict.pop( |
|
f"down_blocks.0.attention_blocks.{i}.crossattention.query.weight" |
|
) |
|
state_dict[f"down_block.attention_blocks.{i}.attn2.to_k.weight"] = state_dict.pop( |
|
f"down_blocks.0.attention_blocks.{i}.crossattention.key.weight" |
|
) |
|
state_dict[f"down_block.attention_blocks.{i}.attn2.to_v.weight"] = state_dict.pop( |
|
f"down_blocks.0.attention_blocks.{i}.crossattention.value.weight" |
|
) |
|
state_dict[f"down_block.attention_blocks.{i}.attn2.to_out.0.weight"] = state_dict.pop( |
|
f"down_blocks.0.attention_blocks.{i}.crossattention.out.weight" |
|
) |
|
|
|
state_dict[f"up_block.res_blocks.{i}.norm.weight"] = state_dict.pop( |
|
f"up_blocks.0.res_blocks.{i}.norm.norm.weight" |
|
) |
|
state_dict[f"up_block.res_blocks.{i}.channelwise_linear_1.weight"] = state_dict.pop( |
|
f"up_blocks.0.res_blocks.{i}.channelwise.0.weight" |
|
) |
|
state_dict[f"up_block.res_blocks.{i}.channelwise_norm.gamma"] = state_dict.pop( |
|
f"up_blocks.0.res_blocks.{i}.channelwise.2.gamma" |
|
) |
|
state_dict[f"up_block.res_blocks.{i}.channelwise_norm.beta"] = state_dict.pop( |
|
f"up_blocks.0.res_blocks.{i}.channelwise.2.beta" |
|
) |
|
state_dict[f"up_block.res_blocks.{i}.channelwise_linear_2.weight"] = state_dict.pop( |
|
f"up_blocks.0.res_blocks.{i}.channelwise.4.weight" |
|
) |
|
state_dict[f"up_block.res_blocks.{i}.cond_embeds_mapper.weight"] = state_dict.pop( |
|
f"up_blocks.0.res_blocks.{i}.adaLN_modulation.mapper.weight" |
|
) |
|
|
|
state_dict[f"up_block.attention_blocks.{i}.norm1.weight"] = state_dict.pop( |
|
f"up_blocks.0.attention_blocks.{i}.attn_layer_norm.weight" |
|
) |
|
state_dict[f"up_block.attention_blocks.{i}.attn1.to_q.weight"] = state_dict.pop( |
|
f"up_blocks.0.attention_blocks.{i}.attention.query.weight" |
|
) |
|
state_dict[f"up_block.attention_blocks.{i}.attn1.to_k.weight"] = state_dict.pop( |
|
f"up_blocks.0.attention_blocks.{i}.attention.key.weight" |
|
) |
|
state_dict[f"up_block.attention_blocks.{i}.attn1.to_v.weight"] = state_dict.pop( |
|
f"up_blocks.0.attention_blocks.{i}.attention.value.weight" |
|
) |
|
state_dict[f"up_block.attention_blocks.{i}.attn1.to_out.0.weight"] = state_dict.pop( |
|
f"up_blocks.0.attention_blocks.{i}.attention.out.weight" |
|
) |
|
|
|
state_dict[f"up_block.attention_blocks.{i}.norm2.weight"] = state_dict.pop( |
|
f"up_blocks.0.attention_blocks.{i}.crossattn_layer_norm.weight" |
|
) |
|
state_dict[f"up_block.attention_blocks.{i}.attn2.to_q.weight"] = state_dict.pop( |
|
f"up_blocks.0.attention_blocks.{i}.crossattention.query.weight" |
|
) |
|
state_dict[f"up_block.attention_blocks.{i}.attn2.to_k.weight"] = state_dict.pop( |
|
f"up_blocks.0.attention_blocks.{i}.crossattention.key.weight" |
|
) |
|
state_dict[f"up_block.attention_blocks.{i}.attn2.to_v.weight"] = state_dict.pop( |
|
f"up_blocks.0.attention_blocks.{i}.crossattention.value.weight" |
|
) |
|
state_dict[f"up_block.attention_blocks.{i}.attn2.to_out.0.weight"] = state_dict.pop( |
|
f"up_blocks.0.attention_blocks.{i}.crossattention.out.weight" |
|
) |
|
|
|
for key in list(state_dict.keys()): |
|
if key.startswith("up_blocks.0"): |
|
key_ = "up_block." + ".".join(key.split(".")[2:]) |
|
state_dict[key_] = state_dict.pop(key) |
|
|
|
if key.startswith("down_blocks.0"): |
|
key_ = "down_block." + ".".join(key.split(".")[2:]) |
|
state_dict[key_] = state_dict.pop(key) |
|
|
|
new_transformer.load_state_dict(state_dict) |
|
|
|
input_ids = torch.randint(0, 10, (1, 32, 32), device=old_transformer.device) |
|
encoder_hidden_states = torch.randn((1, 77, 768), device=old_transformer.device) |
|
cond_embeds = torch.randn((1, 768), device=old_transformer.device) |
|
micro_conds = torch.tensor([[512, 512, 0, 0, 6]], dtype=torch.float32, device=old_transformer.device) |
|
|
|
old_out = old_transformer(input_ids.reshape(1, -1), encoder_hidden_states, cond_embeds, micro_conds) |
|
old_out = old_out.reshape(1, 32, 32, 8192).permute(0, 3, 1, 2) |
|
|
|
new_out = new_transformer(input_ids, encoder_hidden_states, cond_embeds, micro_conds) |
|
|
|
|
|
|
|
max_diff = (old_out - new_out).abs().max() |
|
total_diff = (old_out - new_out).abs().sum() |
|
print(f"Transformer max_diff: {max_diff} total_diff: {total_diff}") |
|
assert max_diff < 0.01 |
|
assert total_diff < 1500 |
|
|
|
return new_transformer |
|
|
|
|
|
def make_vqvae(old_vae): |
|
new_vae = VQModel( |
|
act_fn="silu", |
|
block_out_channels=[128, 256, 256, 512, 768], |
|
down_block_types=[ |
|
"DownEncoderBlock2D", |
|
"DownEncoderBlock2D", |
|
"DownEncoderBlock2D", |
|
"DownEncoderBlock2D", |
|
"DownEncoderBlock2D", |
|
], |
|
in_channels=3, |
|
latent_channels=64, |
|
layers_per_block=2, |
|
norm_num_groups=32, |
|
num_vq_embeddings=8192, |
|
out_channels=3, |
|
sample_size=32, |
|
up_block_types=[ |
|
"UpDecoderBlock2D", |
|
"UpDecoderBlock2D", |
|
"UpDecoderBlock2D", |
|
"UpDecoderBlock2D", |
|
"UpDecoderBlock2D", |
|
], |
|
mid_block_add_attention=False, |
|
lookup_from_codebook=True, |
|
) |
|
new_vae.to(device) |
|
|
|
|
|
|
|
new_state_dict = {} |
|
|
|
old_state_dict = old_vae.state_dict() |
|
|
|
new_state_dict["encoder.conv_in.weight"] = old_state_dict.pop("encoder.conv_in.weight") |
|
new_state_dict["encoder.conv_in.bias"] = old_state_dict.pop("encoder.conv_in.bias") |
|
|
|
convert_vae_block_state_dict(old_state_dict, "encoder.down.0", new_state_dict, "encoder.down_blocks.0") |
|
convert_vae_block_state_dict(old_state_dict, "encoder.down.1", new_state_dict, "encoder.down_blocks.1") |
|
convert_vae_block_state_dict(old_state_dict, "encoder.down.2", new_state_dict, "encoder.down_blocks.2") |
|
convert_vae_block_state_dict(old_state_dict, "encoder.down.3", new_state_dict, "encoder.down_blocks.3") |
|
convert_vae_block_state_dict(old_state_dict, "encoder.down.4", new_state_dict, "encoder.down_blocks.4") |
|
|
|
new_state_dict["encoder.mid_block.resnets.0.norm1.weight"] = old_state_dict.pop("encoder.mid.block_1.norm1.weight") |
|
new_state_dict["encoder.mid_block.resnets.0.norm1.bias"] = old_state_dict.pop("encoder.mid.block_1.norm1.bias") |
|
new_state_dict["encoder.mid_block.resnets.0.conv1.weight"] = old_state_dict.pop("encoder.mid.block_1.conv1.weight") |
|
new_state_dict["encoder.mid_block.resnets.0.conv1.bias"] = old_state_dict.pop("encoder.mid.block_1.conv1.bias") |
|
new_state_dict["encoder.mid_block.resnets.0.norm2.weight"] = old_state_dict.pop("encoder.mid.block_1.norm2.weight") |
|
new_state_dict["encoder.mid_block.resnets.0.norm2.bias"] = old_state_dict.pop("encoder.mid.block_1.norm2.bias") |
|
new_state_dict["encoder.mid_block.resnets.0.conv2.weight"] = old_state_dict.pop("encoder.mid.block_1.conv2.weight") |
|
new_state_dict["encoder.mid_block.resnets.0.conv2.bias"] = old_state_dict.pop("encoder.mid.block_1.conv2.bias") |
|
new_state_dict["encoder.mid_block.resnets.1.norm1.weight"] = old_state_dict.pop("encoder.mid.block_2.norm1.weight") |
|
new_state_dict["encoder.mid_block.resnets.1.norm1.bias"] = old_state_dict.pop("encoder.mid.block_2.norm1.bias") |
|
new_state_dict["encoder.mid_block.resnets.1.conv1.weight"] = old_state_dict.pop("encoder.mid.block_2.conv1.weight") |
|
new_state_dict["encoder.mid_block.resnets.1.conv1.bias"] = old_state_dict.pop("encoder.mid.block_2.conv1.bias") |
|
new_state_dict["encoder.mid_block.resnets.1.norm2.weight"] = old_state_dict.pop("encoder.mid.block_2.norm2.weight") |
|
new_state_dict["encoder.mid_block.resnets.1.norm2.bias"] = old_state_dict.pop("encoder.mid.block_2.norm2.bias") |
|
new_state_dict["encoder.mid_block.resnets.1.conv2.weight"] = old_state_dict.pop("encoder.mid.block_2.conv2.weight") |
|
new_state_dict["encoder.mid_block.resnets.1.conv2.bias"] = old_state_dict.pop("encoder.mid.block_2.conv2.bias") |
|
new_state_dict["encoder.conv_norm_out.weight"] = old_state_dict.pop("encoder.norm_out.weight") |
|
new_state_dict["encoder.conv_norm_out.bias"] = old_state_dict.pop("encoder.norm_out.bias") |
|
new_state_dict["encoder.conv_out.weight"] = old_state_dict.pop("encoder.conv_out.weight") |
|
new_state_dict["encoder.conv_out.bias"] = old_state_dict.pop("encoder.conv_out.bias") |
|
new_state_dict["quant_conv.weight"] = old_state_dict.pop("quant_conv.weight") |
|
new_state_dict["quant_conv.bias"] = old_state_dict.pop("quant_conv.bias") |
|
new_state_dict["quantize.embedding.weight"] = old_state_dict.pop("quantize.embedding.weight") |
|
new_state_dict["post_quant_conv.weight"] = old_state_dict.pop("post_quant_conv.weight") |
|
new_state_dict["post_quant_conv.bias"] = old_state_dict.pop("post_quant_conv.bias") |
|
new_state_dict["decoder.conv_in.weight"] = old_state_dict.pop("decoder.conv_in.weight") |
|
new_state_dict["decoder.conv_in.bias"] = old_state_dict.pop("decoder.conv_in.bias") |
|
new_state_dict["decoder.mid_block.resnets.0.norm1.weight"] = old_state_dict.pop("decoder.mid.block_1.norm1.weight") |
|
new_state_dict["decoder.mid_block.resnets.0.norm1.bias"] = old_state_dict.pop("decoder.mid.block_1.norm1.bias") |
|
new_state_dict["decoder.mid_block.resnets.0.conv1.weight"] = old_state_dict.pop("decoder.mid.block_1.conv1.weight") |
|
new_state_dict["decoder.mid_block.resnets.0.conv1.bias"] = old_state_dict.pop("decoder.mid.block_1.conv1.bias") |
|
new_state_dict["decoder.mid_block.resnets.0.norm2.weight"] = old_state_dict.pop("decoder.mid.block_1.norm2.weight") |
|
new_state_dict["decoder.mid_block.resnets.0.norm2.bias"] = old_state_dict.pop("decoder.mid.block_1.norm2.bias") |
|
new_state_dict["decoder.mid_block.resnets.0.conv2.weight"] = old_state_dict.pop("decoder.mid.block_1.conv2.weight") |
|
new_state_dict["decoder.mid_block.resnets.0.conv2.bias"] = old_state_dict.pop("decoder.mid.block_1.conv2.bias") |
|
new_state_dict["decoder.mid_block.resnets.1.norm1.weight"] = old_state_dict.pop("decoder.mid.block_2.norm1.weight") |
|
new_state_dict["decoder.mid_block.resnets.1.norm1.bias"] = old_state_dict.pop("decoder.mid.block_2.norm1.bias") |
|
new_state_dict["decoder.mid_block.resnets.1.conv1.weight"] = old_state_dict.pop("decoder.mid.block_2.conv1.weight") |
|
new_state_dict["decoder.mid_block.resnets.1.conv1.bias"] = old_state_dict.pop("decoder.mid.block_2.conv1.bias") |
|
new_state_dict["decoder.mid_block.resnets.1.norm2.weight"] = old_state_dict.pop("decoder.mid.block_2.norm2.weight") |
|
new_state_dict["decoder.mid_block.resnets.1.norm2.bias"] = old_state_dict.pop("decoder.mid.block_2.norm2.bias") |
|
new_state_dict["decoder.mid_block.resnets.1.conv2.weight"] = old_state_dict.pop("decoder.mid.block_2.conv2.weight") |
|
new_state_dict["decoder.mid_block.resnets.1.conv2.bias"] = old_state_dict.pop("decoder.mid.block_2.conv2.bias") |
|
|
|
convert_vae_block_state_dict(old_state_dict, "decoder.up.0", new_state_dict, "decoder.up_blocks.4") |
|
convert_vae_block_state_dict(old_state_dict, "decoder.up.1", new_state_dict, "decoder.up_blocks.3") |
|
convert_vae_block_state_dict(old_state_dict, "decoder.up.2", new_state_dict, "decoder.up_blocks.2") |
|
convert_vae_block_state_dict(old_state_dict, "decoder.up.3", new_state_dict, "decoder.up_blocks.1") |
|
convert_vae_block_state_dict(old_state_dict, "decoder.up.4", new_state_dict, "decoder.up_blocks.0") |
|
|
|
new_state_dict["decoder.conv_norm_out.weight"] = old_state_dict.pop("decoder.norm_out.weight") |
|
new_state_dict["decoder.conv_norm_out.bias"] = old_state_dict.pop("decoder.norm_out.bias") |
|
new_state_dict["decoder.conv_out.weight"] = old_state_dict.pop("decoder.conv_out.weight") |
|
new_state_dict["decoder.conv_out.bias"] = old_state_dict.pop("decoder.conv_out.bias") |
|
|
|
|
|
|
|
assert len(old_state_dict.keys()) == 0 |
|
|
|
new_vae.load_state_dict(new_state_dict) |
|
|
|
input = torch.randn((1, 3, 512, 512), device=device) |
|
input = input.clamp(-1, 1) |
|
|
|
old_encoder_output = old_vae.quant_conv(old_vae.encoder(input)) |
|
new_encoder_output = new_vae.quant_conv(new_vae.encoder(input)) |
|
assert (old_encoder_output == new_encoder_output).all() |
|
|
|
old_decoder_output = old_vae.decoder(old_vae.post_quant_conv(old_encoder_output)) |
|
new_decoder_output = new_vae.decoder(new_vae.post_quant_conv(new_encoder_output)) |
|
|
|
|
|
print("kipping vae decoder equivalence check") |
|
print(f"vae decoder diff {(old_decoder_output - new_decoder_output).float().abs().sum()}") |
|
|
|
old_output = old_vae(input)[0] |
|
new_output = new_vae(input)[0] |
|
|
|
|
|
print("skipping full vae equivalence check") |
|
print(f"vae full diff { (old_output - new_output).float().abs().sum()}") |
|
|
|
return new_vae |
|
|
|
|
|
def convert_vae_block_state_dict(old_state_dict, prefix_from, new_state_dict, prefix_to): |
|
|
|
|
|
new_state_dict[f"{prefix_to}.resnets.0.norm1.weight"] = old_state_dict.pop(f"{prefix_from}.block.0.norm1.weight") |
|
new_state_dict[f"{prefix_to}.resnets.0.norm1.bias"] = old_state_dict.pop(f"{prefix_from}.block.0.norm1.bias") |
|
new_state_dict[f"{prefix_to}.resnets.0.conv1.weight"] = old_state_dict.pop(f"{prefix_from}.block.0.conv1.weight") |
|
new_state_dict[f"{prefix_to}.resnets.0.conv1.bias"] = old_state_dict.pop(f"{prefix_from}.block.0.conv1.bias") |
|
new_state_dict[f"{prefix_to}.resnets.0.norm2.weight"] = old_state_dict.pop(f"{prefix_from}.block.0.norm2.weight") |
|
new_state_dict[f"{prefix_to}.resnets.0.norm2.bias"] = old_state_dict.pop(f"{prefix_from}.block.0.norm2.bias") |
|
new_state_dict[f"{prefix_to}.resnets.0.conv2.weight"] = old_state_dict.pop(f"{prefix_from}.block.0.conv2.weight") |
|
new_state_dict[f"{prefix_to}.resnets.0.conv2.bias"] = old_state_dict.pop(f"{prefix_from}.block.0.conv2.bias") |
|
|
|
if f"{prefix_from}.block.0.nin_shortcut.weight" in old_state_dict: |
|
new_state_dict[f"{prefix_to}.resnets.0.conv_shortcut.weight"] = old_state_dict.pop(f"{prefix_from}.block.0.nin_shortcut.weight") |
|
new_state_dict[f"{prefix_to}.resnets.0.conv_shortcut.bias"] = old_state_dict.pop(f"{prefix_from}.block.0.nin_shortcut.bias") |
|
|
|
new_state_dict[f"{prefix_to}.resnets.1.norm1.weight"] = old_state_dict.pop(f"{prefix_from}.block.1.norm1.weight") |
|
new_state_dict[f"{prefix_to}.resnets.1.norm1.bias"] = old_state_dict.pop(f"{prefix_from}.block.1.norm1.bias") |
|
new_state_dict[f"{prefix_to}.resnets.1.conv1.weight"] = old_state_dict.pop(f"{prefix_from}.block.1.conv1.weight") |
|
new_state_dict[f"{prefix_to}.resnets.1.conv1.bias"] = old_state_dict.pop(f"{prefix_from}.block.1.conv1.bias") |
|
new_state_dict[f"{prefix_to}.resnets.1.norm2.weight"] = old_state_dict.pop(f"{prefix_from}.block.1.norm2.weight") |
|
new_state_dict[f"{prefix_to}.resnets.1.norm2.bias"] = old_state_dict.pop(f"{prefix_from}.block.1.norm2.bias") |
|
new_state_dict[f"{prefix_to}.resnets.1.conv2.weight"] = old_state_dict.pop(f"{prefix_from}.block.1.conv2.weight") |
|
new_state_dict[f"{prefix_to}.resnets.1.conv2.bias"] = old_state_dict.pop(f"{prefix_from}.block.1.conv2.bias") |
|
|
|
if f"{prefix_from}.downsample.conv.weight" in old_state_dict: |
|
new_state_dict[f"{prefix_to}.downsamplers.0.conv.weight"] = old_state_dict.pop(f"{prefix_from}.downsample.conv.weight") |
|
new_state_dict[f"{prefix_to}.downsamplers.0.conv.bias"] = old_state_dict.pop(f"{prefix_from}.downsample.conv.bias") |
|
|
|
if f"{prefix_from}.upsample.conv.weight" in old_state_dict: |
|
new_state_dict[f"{prefix_to}.upsamplers.0.conv.weight"] = old_state_dict.pop(f"{prefix_from}.upsample.conv.weight") |
|
new_state_dict[f"{prefix_to}.upsamplers.0.conv.bias"] = old_state_dict.pop(f"{prefix_from}.upsample.conv.bias") |
|
|
|
if f"{prefix_from}.block.2.norm1.weight" in old_state_dict: |
|
new_state_dict[f"{prefix_to}.resnets.2.norm1.weight"] = old_state_dict.pop(f"{prefix_from}.block.2.norm1.weight") |
|
new_state_dict[f"{prefix_to}.resnets.2.norm1.bias"] = old_state_dict.pop(f"{prefix_from}.block.2.norm1.bias") |
|
new_state_dict[f"{prefix_to}.resnets.2.conv1.weight"] = old_state_dict.pop(f"{prefix_from}.block.2.conv1.weight") |
|
new_state_dict[f"{prefix_to}.resnets.2.conv1.bias"] = old_state_dict.pop(f"{prefix_from}.block.2.conv1.bias") |
|
new_state_dict[f"{prefix_to}.resnets.2.norm2.weight"] = old_state_dict.pop(f"{prefix_from}.block.2.norm2.weight") |
|
new_state_dict[f"{prefix_to}.resnets.2.norm2.bias"] = old_state_dict.pop(f"{prefix_from}.block.2.norm2.bias") |
|
new_state_dict[f"{prefix_to}.resnets.2.conv2.weight"] = old_state_dict.pop(f"{prefix_from}.block.2.conv2.weight") |
|
new_state_dict[f"{prefix_to}.resnets.2.conv2.bias"] = old_state_dict.pop(f"{prefix_from}.block.2.conv2.bias") |
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|