|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
import sys |
|
import tempfile |
|
|
|
|
|
sys.path.append("..") |
|
from test_examples_utils import ExamplesTestsAccelerate, run_command |
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG) |
|
|
|
logger = logging.getLogger() |
|
stream_handler = logging.StreamHandler(sys.stdout) |
|
logger.addHandler(stream_handler) |
|
|
|
|
|
class ControlNet(ExamplesTestsAccelerate): |
|
def test_controlnet_checkpointing_checkpoints_total_limit(self): |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
test_args = f""" |
|
examples/controlnet/train_controlnet.py |
|
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe |
|
--dataset_name=hf-internal-testing/fill10 |
|
--output_dir={tmpdir} |
|
--resolution=64 |
|
--train_batch_size=1 |
|
--gradient_accumulation_steps=1 |
|
--max_train_steps=6 |
|
--checkpoints_total_limit=2 |
|
--checkpointing_steps=2 |
|
--controlnet_model_name_or_path=hf-internal-testing/tiny-controlnet |
|
""".split() |
|
|
|
run_command(self._launch_args + test_args) |
|
|
|
self.assertEqual( |
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, |
|
{"checkpoint-4", "checkpoint-6"}, |
|
) |
|
|
|
def test_controlnet_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
test_args = f""" |
|
examples/controlnet/train_controlnet.py |
|
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe |
|
--dataset_name=hf-internal-testing/fill10 |
|
--output_dir={tmpdir} |
|
--resolution=64 |
|
--train_batch_size=1 |
|
--gradient_accumulation_steps=1 |
|
--controlnet_model_name_or_path=hf-internal-testing/tiny-controlnet |
|
--max_train_steps=6 |
|
--checkpointing_steps=2 |
|
""".split() |
|
|
|
run_command(self._launch_args + test_args) |
|
|
|
self.assertEqual( |
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, |
|
{"checkpoint-2", "checkpoint-4", "checkpoint-6"}, |
|
) |
|
|
|
resume_run_args = f""" |
|
examples/controlnet/train_controlnet.py |
|
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe |
|
--dataset_name=hf-internal-testing/fill10 |
|
--output_dir={tmpdir} |
|
--resolution=64 |
|
--train_batch_size=1 |
|
--gradient_accumulation_steps=1 |
|
--controlnet_model_name_or_path=hf-internal-testing/tiny-controlnet |
|
--max_train_steps=8 |
|
--checkpointing_steps=2 |
|
--resume_from_checkpoint=checkpoint-6 |
|
--checkpoints_total_limit=2 |
|
""".split() |
|
|
|
run_command(self._launch_args + resume_run_args) |
|
|
|
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"}) |
|
|
|
|
|
class ControlNetSDXL(ExamplesTestsAccelerate): |
|
def test_controlnet_sdxl(self): |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
test_args = f""" |
|
examples/controlnet/train_controlnet_sdxl.py |
|
--pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-xl-pipe |
|
--dataset_name=hf-internal-testing/fill10 |
|
--output_dir={tmpdir} |
|
--resolution=64 |
|
--train_batch_size=1 |
|
--gradient_accumulation_steps=1 |
|
--controlnet_model_name_or_path=hf-internal-testing/tiny-controlnet-sdxl |
|
--max_train_steps=4 |
|
--checkpointing_steps=2 |
|
""".split() |
|
|
|
run_command(self._launch_args + test_args) |
|
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "diffusion_pytorch_model.safetensors"))) |
|
|