|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
import sys |
|
import tempfile |
|
|
|
import safetensors |
|
|
|
|
|
sys.path.append("..") |
|
from test_examples_utils import ExamplesTestsAccelerate, run_command |
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG) |
|
|
|
logger = logging.getLogger() |
|
stream_handler = logging.StreamHandler(sys.stdout) |
|
logger.addHandler(stream_handler) |
|
|
|
|
|
class TextToImageLCM(ExamplesTestsAccelerate): |
|
def test_text_to_image_lcm_lora_sdxl(self): |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
test_args = f""" |
|
examples/consistency_distillation/train_lcm_distill_lora_sdxl.py |
|
--pretrained_teacher_model hf-internal-testing/tiny-stable-diffusion-xl-pipe |
|
--dataset_name hf-internal-testing/dummy_image_text_data |
|
--resolution 64 |
|
--lora_rank 4 |
|
--train_batch_size 1 |
|
--gradient_accumulation_steps 1 |
|
--max_train_steps 2 |
|
--learning_rate 5.0e-04 |
|
--scale_lr |
|
--lr_scheduler constant |
|
--lr_warmup_steps 0 |
|
--output_dir {tmpdir} |
|
""".split() |
|
|
|
run_command(self._launch_args + test_args) |
|
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) |
|
|
|
|
|
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) |
|
is_lora = all("lora" in k for k in lora_state_dict.keys()) |
|
self.assertTrue(is_lora) |
|
|
|
def test_text_to_image_lcm_lora_sdxl_checkpointing(self): |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
test_args = f""" |
|
examples/consistency_distillation/train_lcm_distill_lora_sdxl.py |
|
--pretrained_teacher_model hf-internal-testing/tiny-stable-diffusion-xl-pipe |
|
--dataset_name hf-internal-testing/dummy_image_text_data |
|
--resolution 64 |
|
--lora_rank 4 |
|
--train_batch_size 1 |
|
--gradient_accumulation_steps 1 |
|
--max_train_steps 7 |
|
--checkpointing_steps 2 |
|
--learning_rate 5.0e-04 |
|
--scale_lr |
|
--lr_scheduler constant |
|
--lr_warmup_steps 0 |
|
--output_dir {tmpdir} |
|
""".split() |
|
|
|
run_command(self._launch_args + test_args) |
|
|
|
self.assertEqual( |
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, |
|
{"checkpoint-2", "checkpoint-4", "checkpoint-6"}, |
|
) |
|
|
|
test_args = f""" |
|
examples/consistency_distillation/train_lcm_distill_lora_sdxl.py |
|
--pretrained_teacher_model hf-internal-testing/tiny-stable-diffusion-xl-pipe |
|
--dataset_name hf-internal-testing/dummy_image_text_data |
|
--resolution 64 |
|
--lora_rank 4 |
|
--train_batch_size 1 |
|
--gradient_accumulation_steps 1 |
|
--max_train_steps 9 |
|
--checkpointing_steps 2 |
|
--resume_from_checkpoint latest |
|
--learning_rate 5.0e-04 |
|
--scale_lr |
|
--lr_scheduler constant |
|
--lr_warmup_steps 0 |
|
--output_dir {tmpdir} |
|
""".split() |
|
|
|
run_command(self._launch_args + test_args) |
|
|
|
self.assertEqual( |
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, |
|
{"checkpoint-2", "checkpoint-4", "checkpoint-6", "checkpoint-8"}, |
|
) |
|
|