File size: 13,395 Bytes
ef4d689
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
"""
This script requires you to build `LAVIS` from source, since the pip version doesn't have BLIP Diffusion. Follow instructions here: https://github.com/salesforce/LAVIS/tree/main.
"""

import argparse
import os
import tempfile

import torch
from lavis.models import load_model_and_preprocess
from transformers import CLIPTokenizer
from transformers.models.blip_2.configuration_blip_2 import Blip2Config

from diffusers import (
    AutoencoderKL,
    PNDMScheduler,
    UNet2DConditionModel,
)
from diffusers.pipelines import BlipDiffusionPipeline
from diffusers.pipelines.blip_diffusion.blip_image_processing import BlipImageProcessor
from diffusers.pipelines.blip_diffusion.modeling_blip2 import Blip2QFormerModel
from diffusers.pipelines.blip_diffusion.modeling_ctx_clip import ContextCLIPTextModel


BLIP2_CONFIG = {
    "vision_config": {
        "hidden_size": 1024,
        "num_hidden_layers": 23,
        "num_attention_heads": 16,
        "image_size": 224,
        "patch_size": 14,
        "intermediate_size": 4096,
        "hidden_act": "quick_gelu",
    },
    "qformer_config": {
        "cross_attention_frequency": 1,
        "encoder_hidden_size": 1024,
        "vocab_size": 30523,
    },
    "num_query_tokens": 16,
}
blip2config = Blip2Config(**BLIP2_CONFIG)


def qformer_model_from_original_config():
    qformer = Blip2QFormerModel(blip2config)
    return qformer


def embeddings_from_original_checkpoint(model, diffuser_embeddings_prefix, original_embeddings_prefix):
    embeddings = {}
    embeddings.update(
        {
            f"{diffuser_embeddings_prefix}.word_embeddings.weight": model[
                f"{original_embeddings_prefix}.word_embeddings.weight"
            ]
        }
    )
    embeddings.update(
        {
            f"{diffuser_embeddings_prefix}.position_embeddings.weight": model[
                f"{original_embeddings_prefix}.position_embeddings.weight"
            ]
        }
    )
    embeddings.update(
        {f"{diffuser_embeddings_prefix}.LayerNorm.weight": model[f"{original_embeddings_prefix}.LayerNorm.weight"]}
    )
    embeddings.update(
        {f"{diffuser_embeddings_prefix}.LayerNorm.bias": model[f"{original_embeddings_prefix}.LayerNorm.bias"]}
    )
    return embeddings


def proj_layer_from_original_checkpoint(model, diffuser_proj_prefix, original_proj_prefix):
    proj_layer = {}
    proj_layer.update({f"{diffuser_proj_prefix}.dense1.weight": model[f"{original_proj_prefix}.dense1.weight"]})
    proj_layer.update({f"{diffuser_proj_prefix}.dense1.bias": model[f"{original_proj_prefix}.dense1.bias"]})
    proj_layer.update({f"{diffuser_proj_prefix}.dense2.weight": model[f"{original_proj_prefix}.dense2.weight"]})
    proj_layer.update({f"{diffuser_proj_prefix}.dense2.bias": model[f"{original_proj_prefix}.dense2.bias"]})
    proj_layer.update({f"{diffuser_proj_prefix}.LayerNorm.weight": model[f"{original_proj_prefix}.LayerNorm.weight"]})
    proj_layer.update({f"{diffuser_proj_prefix}.LayerNorm.bias": model[f"{original_proj_prefix}.LayerNorm.bias"]})
    return proj_layer


def attention_from_original_checkpoint(model, diffuser_attention_prefix, original_attention_prefix):
    attention = {}
    attention.update(
        {
            f"{diffuser_attention_prefix}.attention.query.weight": model[
                f"{original_attention_prefix}.self.query.weight"
            ]
        }
    )
    attention.update(
        {f"{diffuser_attention_prefix}.attention.query.bias": model[f"{original_attention_prefix}.self.query.bias"]}
    )
    attention.update(
        {f"{diffuser_attention_prefix}.attention.key.weight": model[f"{original_attention_prefix}.self.key.weight"]}
    )
    attention.update(
        {f"{diffuser_attention_prefix}.attention.key.bias": model[f"{original_attention_prefix}.self.key.bias"]}
    )
    attention.update(
        {
            f"{diffuser_attention_prefix}.attention.value.weight": model[
                f"{original_attention_prefix}.self.value.weight"
            ]
        }
    )
    attention.update(
        {f"{diffuser_attention_prefix}.attention.value.bias": model[f"{original_attention_prefix}.self.value.bias"]}
    )
    attention.update(
        {f"{diffuser_attention_prefix}.output.dense.weight": model[f"{original_attention_prefix}.output.dense.weight"]}
    )
    attention.update(
        {f"{diffuser_attention_prefix}.output.dense.bias": model[f"{original_attention_prefix}.output.dense.bias"]}
    )
    attention.update(
        {
            f"{diffuser_attention_prefix}.output.LayerNorm.weight": model[
                f"{original_attention_prefix}.output.LayerNorm.weight"
            ]
        }
    )
    attention.update(
        {
            f"{diffuser_attention_prefix}.output.LayerNorm.bias": model[
                f"{original_attention_prefix}.output.LayerNorm.bias"
            ]
        }
    )
    return attention


def output_layers_from_original_checkpoint(model, diffuser_output_prefix, original_output_prefix):
    output_layers = {}
    output_layers.update({f"{diffuser_output_prefix}.dense.weight": model[f"{original_output_prefix}.dense.weight"]})
    output_layers.update({f"{diffuser_output_prefix}.dense.bias": model[f"{original_output_prefix}.dense.bias"]})
    output_layers.update(
        {f"{diffuser_output_prefix}.LayerNorm.weight": model[f"{original_output_prefix}.LayerNorm.weight"]}
    )
    output_layers.update(
        {f"{diffuser_output_prefix}.LayerNorm.bias": model[f"{original_output_prefix}.LayerNorm.bias"]}
    )
    return output_layers


def encoder_from_original_checkpoint(model, diffuser_encoder_prefix, original_encoder_prefix):
    encoder = {}
    for i in range(blip2config.qformer_config.num_hidden_layers):
        encoder.update(
            attention_from_original_checkpoint(
                model, f"{diffuser_encoder_prefix}.{i}.attention", f"{original_encoder_prefix}.{i}.attention"
            )
        )
        encoder.update(
            attention_from_original_checkpoint(
                model, f"{diffuser_encoder_prefix}.{i}.crossattention", f"{original_encoder_prefix}.{i}.crossattention"
            )
        )

        encoder.update(
            {
                f"{diffuser_encoder_prefix}.{i}.intermediate.dense.weight": model[
                    f"{original_encoder_prefix}.{i}.intermediate.dense.weight"
                ]
            }
        )
        encoder.update(
            {
                f"{diffuser_encoder_prefix}.{i}.intermediate.dense.bias": model[
                    f"{original_encoder_prefix}.{i}.intermediate.dense.bias"
                ]
            }
        )
        encoder.update(
            {
                f"{diffuser_encoder_prefix}.{i}.intermediate_query.dense.weight": model[
                    f"{original_encoder_prefix}.{i}.intermediate_query.dense.weight"
                ]
            }
        )
        encoder.update(
            {
                f"{diffuser_encoder_prefix}.{i}.intermediate_query.dense.bias": model[
                    f"{original_encoder_prefix}.{i}.intermediate_query.dense.bias"
                ]
            }
        )

        encoder.update(
            output_layers_from_original_checkpoint(
                model, f"{diffuser_encoder_prefix}.{i}.output", f"{original_encoder_prefix}.{i}.output"
            )
        )
        encoder.update(
            output_layers_from_original_checkpoint(
                model, f"{diffuser_encoder_prefix}.{i}.output_query", f"{original_encoder_prefix}.{i}.output_query"
            )
        )
    return encoder


def visual_encoder_layer_from_original_checkpoint(model, diffuser_prefix, original_prefix):
    visual_encoder_layer = {}

    visual_encoder_layer.update({f"{diffuser_prefix}.layer_norm1.weight": model[f"{original_prefix}.ln_1.weight"]})
    visual_encoder_layer.update({f"{diffuser_prefix}.layer_norm1.bias": model[f"{original_prefix}.ln_1.bias"]})
    visual_encoder_layer.update({f"{diffuser_prefix}.layer_norm2.weight": model[f"{original_prefix}.ln_2.weight"]})
    visual_encoder_layer.update({f"{diffuser_prefix}.layer_norm2.bias": model[f"{original_prefix}.ln_2.bias"]})
    visual_encoder_layer.update(
        {f"{diffuser_prefix}.self_attn.qkv.weight": model[f"{original_prefix}.attn.in_proj_weight"]}
    )
    visual_encoder_layer.update(
        {f"{diffuser_prefix}.self_attn.qkv.bias": model[f"{original_prefix}.attn.in_proj_bias"]}
    )
    visual_encoder_layer.update(
        {f"{diffuser_prefix}.self_attn.projection.weight": model[f"{original_prefix}.attn.out_proj.weight"]}
    )
    visual_encoder_layer.update(
        {f"{diffuser_prefix}.self_attn.projection.bias": model[f"{original_prefix}.attn.out_proj.bias"]}
    )
    visual_encoder_layer.update({f"{diffuser_prefix}.mlp.fc1.weight": model[f"{original_prefix}.mlp.c_fc.weight"]})
    visual_encoder_layer.update({f"{diffuser_prefix}.mlp.fc1.bias": model[f"{original_prefix}.mlp.c_fc.bias"]})
    visual_encoder_layer.update({f"{diffuser_prefix}.mlp.fc2.weight": model[f"{original_prefix}.mlp.c_proj.weight"]})
    visual_encoder_layer.update({f"{diffuser_prefix}.mlp.fc2.bias": model[f"{original_prefix}.mlp.c_proj.bias"]})

    return visual_encoder_layer


def visual_encoder_from_original_checkpoint(model, diffuser_prefix, original_prefix):
    visual_encoder = {}

    visual_encoder.update(
        {
            f"{diffuser_prefix}.embeddings.class_embedding": model[f"{original_prefix}.class_embedding"]
            .unsqueeze(0)
            .unsqueeze(0)
        }
    )
    visual_encoder.update(
        {
            f"{diffuser_prefix}.embeddings.position_embedding": model[
                f"{original_prefix}.positional_embedding"
            ].unsqueeze(0)
        }
    )
    visual_encoder.update(
        {f"{diffuser_prefix}.embeddings.patch_embedding.weight": model[f"{original_prefix}.conv1.weight"]}
    )
    visual_encoder.update({f"{diffuser_prefix}.pre_layernorm.weight": model[f"{original_prefix}.ln_pre.weight"]})
    visual_encoder.update({f"{diffuser_prefix}.pre_layernorm.bias": model[f"{original_prefix}.ln_pre.bias"]})

    for i in range(blip2config.vision_config.num_hidden_layers):
        visual_encoder.update(
            visual_encoder_layer_from_original_checkpoint(
                model, f"{diffuser_prefix}.encoder.layers.{i}", f"{original_prefix}.transformer.resblocks.{i}"
            )
        )

    visual_encoder.update({f"{diffuser_prefix}.post_layernorm.weight": model["blip.ln_vision.weight"]})
    visual_encoder.update({f"{diffuser_prefix}.post_layernorm.bias": model["blip.ln_vision.bias"]})

    return visual_encoder


def qformer_original_checkpoint_to_diffusers_checkpoint(model):
    qformer_checkpoint = {}
    qformer_checkpoint.update(embeddings_from_original_checkpoint(model, "embeddings", "blip.Qformer.bert.embeddings"))
    qformer_checkpoint.update({"query_tokens": model["blip.query_tokens"]})
    qformer_checkpoint.update(proj_layer_from_original_checkpoint(model, "proj_layer", "proj_layer"))
    qformer_checkpoint.update(
        encoder_from_original_checkpoint(model, "encoder.layer", "blip.Qformer.bert.encoder.layer")
    )
    qformer_checkpoint.update(visual_encoder_from_original_checkpoint(model, "visual_encoder", "blip.visual_encoder"))
    return qformer_checkpoint


def get_qformer(model):
    print("loading qformer")

    qformer = qformer_model_from_original_config()
    qformer_diffusers_checkpoint = qformer_original_checkpoint_to_diffusers_checkpoint(model)

    load_checkpoint_to_model(qformer_diffusers_checkpoint, qformer)

    print("done loading qformer")
    return qformer


def load_checkpoint_to_model(checkpoint, model):
    with tempfile.NamedTemporaryFile(delete=False) as file:
        torch.save(checkpoint, file.name)
        del checkpoint
        model.load_state_dict(torch.load(file.name), strict=False)

    os.remove(file.name)


def save_blip_diffusion_model(model, args):
    qformer = get_qformer(model)
    qformer.eval()

    text_encoder = ContextCLIPTextModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="text_encoder")
    vae = AutoencoderKL.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="vae")

    unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
    vae.eval()
    text_encoder.eval()
    scheduler = PNDMScheduler(
        beta_start=0.00085,
        beta_end=0.012,
        beta_schedule="scaled_linear",
        set_alpha_to_one=False,
        skip_prk_steps=True,
    )
    tokenizer = CLIPTokenizer.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="tokenizer")
    image_processor = BlipImageProcessor()
    blip_diffusion = BlipDiffusionPipeline(
        tokenizer=tokenizer,
        text_encoder=text_encoder,
        vae=vae,
        unet=unet,
        scheduler=scheduler,
        qformer=qformer,
        image_processor=image_processor,
    )
    blip_diffusion.save_pretrained(args.checkpoint_path)


def main(args):
    model, _, _ = load_model_and_preprocess("blip_diffusion", "base", device="cpu", is_eval=True)
    save_blip_diffusion_model(model.state_dict(), args)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.")
    args = parser.parse_args()

    main(args)