Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
## Model Card: UnfilteredAI/Promt-generator
|
3 |
+
|
4 |
+
### Model Overview
|
5 |
+
The **UnfilteredAI/Promt-generator** is a text generation model designed specifically for creating prompts for text-to-image models. It leverages **PyTorch** and **safetensors** for optimized performance and storage, ensuring that it can be easily deployed and scaled for prompt generation tasks.
|
6 |
+
|
7 |
+
|
8 |
+
### Intended Use
|
9 |
+
This model is primarily intended for:
|
10 |
+
- **Prompt generation** for text-to-image models.
|
11 |
+
- Creative AI applications where generating high-quality, diverse image descriptions is critical.
|
12 |
+
- Supporting AI artists and developers working on generative art projects.
|
13 |
+
|
14 |
+
### How to Use
|
15 |
+
To generate prompts using this model, follow these steps:
|
16 |
+
|
17 |
+
1. Load the model in your PyTorch environment.
|
18 |
+
2. Input your desired parameters for the prompt generation task.
|
19 |
+
3. The model will return text descriptions based on the input, which can then be used with text-to-image models.
|
20 |
+
|
21 |
+
**Example Code:**
|
22 |
+
|
23 |
+
```python
|
24 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
25 |
+
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained("UnfilteredAI/Promt-generator")
|
27 |
+
model = AutoModelForCausalLM.from_pretrained("UnfilteredAI/Promt-generator")
|
28 |
+
|
29 |
+
prompt = "a red car"
|
30 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
31 |
+
outputs = model.generate(**inputs)
|
32 |
+
generated_prompt = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
33 |
+
|
34 |
+
print(generated_prompt)
|
35 |
+
```
|