File size: 2,057 Bytes
725e0e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
526a8d8
 
 
 
90cdfc9
725e0e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
tags:
- generated_from_trainer
model-index:
- name: pegasus-x-booksum-chapter
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# pegasus-x-booksum-chapter

This model is a fine-tuned version of [google/pegasus-x-large](https://huggingface.co/google/pegasus-x-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5993

{'rouge1': 0.23378525407555606,  
 'rouge2': 0.0362962105694859,  
 'rougeL': 0.13587636708639556,  
 'rougeLsum': 0.13593997471043634}   

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.8377        | 0.67  | 200  | 2.7300          |
| 2.7462        | 1.33  | 400  | 2.6613          |
| 2.7148        | 2.0   | 600  | 2.6345          |
| 2.6242        | 2.67  | 800  | 2.6249          |
| 2.5971        | 3.33  | 1000 | 2.6150          |
| 2.6103        | 4.0   | 1200 | 2.6092          |
| 2.5763        | 4.67  | 1400 | 2.6083          |
| 2.5737        | 5.33  | 1600 | 2.6035          |
| 2.6252        | 6.0   | 1800 | 2.6007          |
| 2.5402        | 6.67  | 2000 | 2.6004          |
| 2.5278        | 7.33  | 2200 | 2.6007          |
| 2.5173        | 8.0   | 2400 | 2.5993          |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3