--- base_model: google/pegasus-x-base tags: - generated_from_trainer datasets: - arxiv-summarization model-index: - name: Paper-Summarization-ArXiv results: - task: name: Summarization type: summarization dataset: name: ccdv/arxiv-summarization type: ccdv/arxiv-summarization config: section split: test args: section metrics: - name: ROUGE-1 type: rouge value: 43.2305 - name: ROUGE-2 type: rouge value: 16.6571 - name: ROUGE-L type: rouge value: 24.4315 - name: ROUGE-LSum type: rouge value: 33.9399 --- # Paper-Summarization-ArXiv This model is a fine-tuned version of [google/pegasus-x-base](https://huggingface.co/google/pegasus-x-base) on the arxiv-summarization dataset. It achieves the following results on the evaluation set: - Loss: 2.0127 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.6153 | 1.0 | 3172 | 2.1045 | | 2.202 | 2.0 | 6344 | 2.0511 | | 2.1547 | 3.0 | 9516 | 2.0282 | | 2.132 | 4.0 | 12688 | 2.0164 | | 2.1222 | 5.0 | 15860 | 2.0127 | ## Model description More information needed ## Intended uses & limitations Paper Summarization ## Compare to Baseline - **Pegasus-X-base Zero-shot Performance:** - ROUGE-1 | ROUGE-2 | ROUGE-L | ROUGE-LSUM : 6.2269 | 0.7894 | 4.6905 | 5.4591 - **Our Model (Generated with length_penalty=1, num_beams=2, max_length=128*4,min_length=150, no_repeat_ngram_size= 3, top_k=25,top_p=0.95**) - ROUGE-1 | ROUGE-2 | ROUGE-L | ROUGE-LSUM : 43.2305 | 16.6571 | 24.4315 | 33.9399 ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1586 - num_epochs: 5 ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.2