File size: 3,177 Bytes
ece032c
 
 
 
 
57c555c
ece032c
 
591097e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57c555c
591097e
 
 
57c555c
 
 
 
 
 
 
ece032c
 
 
 
 
 
 
 
591097e
ece032c
 
 
591097e
 
 
 
 
 
 
 
 
 
 
 
ece032c
 
 
 
 
 
a7e8c2c
 
 
e685f90
dadcbe0
591097e
e685f90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
591097e
ece032c
 
57c555c
ece032c
 
 
57c555c
 
 
ece032c
 
 
e685f90
ece032c
 
 
 
 
 
 
e685f90
ece032c
 
 
 
 
 
 
57c555c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
---
base_model: google/pegasus-x-base
tags:
- generated_from_trainer
datasets:
- ccdv/arxiv-summarization
model-index:
- name: Paper-Summarization-ArXiv
  results:
  - task:
      name: Summarization
      type: summarization
    dataset:
      name: ccdv/arxiv-summarization
      type: ccdv/arxiv-summarization
      config: section
      split: test
      args: section
    metrics:
    - name: ROUGE-1
      type: rouge
      value: 43.2305
    - name: ROUGE-2
      type: rouge
      value: 16.6571
    - name: ROUGE-L
      type: rouge
      value: 24.4315
    - name: ROUGE-LSum
      type: rouge
      value: 33.9399
license: bigscience-openrail-m
language:
- en
metrics:
- rouge
library_name: transformers
pipeline_tag: summarization
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Paper-Summarization-ArXiv

This model is a fine-tuned version of [google/pegasus-x-base](https://huggingface.co/google/pegasus-x-base) on the arxiv-summarization dataset.

It achieves the following results on the evaluation set:
- Loss: 2.0127

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.6153        | 1.0   | 3172  | 2.1045          |
| 2.202         | 2.0   | 6344  | 2.0511          |
| 2.1547        | 3.0   | 9516  | 2.0282          |
| 2.132         | 4.0   | 12688 | 2.0164          |
| 2.1222        | 5.0   | 15860 | 2.0127          |



## Model description

More information needed

## Intended uses & limitations

Paper Summarization 

## Compare to Baseline
- Pegasus-X-base **zero-shot** Performance:
  - R-1 | R-2 | R-L | R-LSUM : 6.2269 | 0.7894 | 4.6905 | 5.4591

- **This model**


  - R-1 | R-2 | R-L | R-LSUM : 43.2305 | 16.6571 | 24.4315 | 33.9399 at 
  ```(python)
  model.generate(input_ids =inputs["input_ids"].to(device),
                              attention_mask=inputs["attention_mask"].to(device),
                              length_penalty=1, num_beams=2, max_length=128*4,min_length=150, no_repeat_ngram_size= 3, top_k=25,top_p=0.95)
    
  ```
  - R-1 | R-2 | R-L | R-LSUM : 40.8486 | 16.3717 | 25.2937 | 33.6923 at 
  ```(python)
  model.generate(input_ids =inputs["input_ids"].to(device),
                              attention_mask=inputs["attention_mask"].to(device),
                              length_penalty=1, num_beams=1, max_length=128*2,top_p=1)
  ```
  

## Training and evaluation data

We use full of dataset 'ccdv/arxiv-summarization'.

## Training procedure

We use huggingface-based environment such as datasets, trainer, etc.


### Training hyperparameters

The following hyperparameters were used during training:
```learning_rate: 1e-05,train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1586
- num_epochs: 5```


### Framework versions

- Transformers 4.32.1
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.2