--- base_model: google/pegasus-x-base tags: - generated_from_trainer datasets: - arxiv-summarization model-index: - name: Long-paper-summarization-pegasus-x-b results: - task: name: Summarization type: summarization dataset: name: ccdv/arxiv-summarization type: ccdv/arxiv-summarization config: section split: test args: section metrics: - name: ROUGE-1 type: rouge value: 35.6639 - name: ROUGE-2 type: rouge value: 9.81362 - name: ROUGE-L type: rouge value: 19.9013 - name: ROUGE-LSum type: rouge value: 28.1444 license: mit language: - en metrics: - rouge --- # Long-paper-summarization-pegasus-x-b This model is a fine-tuned version of [google/pegasus-x-base](https://huggingface.co/google/pegasus-x-base) on the arxiv-summarization dataset. It achieves the following results on the evaluation set: - Loss: 2.7262 ## Model Description / Training and evaluation data **Base Model**: [Pegasus-x-base (State-of-the-art for Long Context Summarization)](https://huggingface.co/google/pegasus-x-base) **Finetuning Dataset**: - We used **train[25000:100000] of ArXiv Dataset (Cohan et al., 2018, NAACL-HLT 2018)** [[PDF]](https://arxiv.org/abs/1804.05685) - (Full length is 200,000+, We will upload full trained Model soon) **GPU**: One A100 GPU **Train time**: About 24 hours for 3 epochs **Test time**: About 8 hours for test dataset. ## Intended uses & limitations - **Research Paper Summarization** ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 390 - **num_epochs: 3 (takes about 24 hours)** ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.401 | 0.33 | 390 | 2.3985 | | 2.5444 | 0.67 | 780 | 2.2461 | | 2.4849 | 1.0 | 1170 | 2.2690 | | 2.5735 | 1.33 | 1560 | 2.3334 | | 2.7045 | 1.66 | 1950 | 2.4330 | | 2.8939 | 2.0 | 2340 | 2.5461 | | 3.0773 | 2.33 | 2730 | 2.6502 | | 3.2149 | 2.66 | 3120 | 2.7039 | | 3.2844 | 3.0 | 3510 | 2.7262 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.2