File size: 2,228 Bytes
8d96bba 351af42 f04122c 8d96bba 351af42 8d96bba 351af42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
base_model: google/pegasus-x-base
tags:
- generated_from_trainer
datasets:
- arxiv-summarization
model-index:
- name: Long-paper-summarization-pegasus-x-b
results: []
license: mit
language:
- en
metrics:
- rouge
- type: rouge # Required. Example: wer. Use metric id from https://hf.co/metrics
value: {0.3370780494168376} # Required. Example: 20.90
name: {ROUGE-1}
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Long-paper-summarization-pegasus-x-b
This model is a fine-tuned version of [google/pegasus-x-base](https://huggingface.co/google/pegasus-x-base) on the arxiv-summarization dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7262
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 390
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.401 | 0.33 | 390 | 2.3985 |
| 2.5444 | 0.67 | 780 | 2.2461 |
| 2.4849 | 1.0 | 1170 | 2.2690 |
| 2.5735 | 1.33 | 1560 | 2.3334 |
| 2.7045 | 1.66 | 1950 | 2.4330 |
| 2.8939 | 2.0 | 2340 | 2.5461 |
| 3.0773 | 2.33 | 2730 | 2.6502 |
| 3.2149 | 2.66 | 3120 | 2.7039 |
| 3.2844 | 3.0 | 3510 | 2.7262 |
### Test Data Performance
{'rouge1': 0.3370780494168376, 'rouge2': 0.09813617709429612, 'rougeL': 0.19901299825841634, 'rougeLsum': 0.28144444244239153}
### Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.2 |