File size: 2,228 Bytes
8d96bba
 
 
 
 
 
 
 
 
351af42
 
 
 
 
f04122c
 
 
8d96bba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
351af42
 
 
 
8d96bba
 
 
 
 
351af42
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
base_model: google/pegasus-x-base
tags:
- generated_from_trainer
datasets:
- arxiv-summarization
model-index:
- name: Long-paper-summarization-pegasus-x-b
  results: []
license: mit
language:
- en
metrics:
- rouge
- type: rouge         # Required. Example: wer. Use metric id from https://hf.co/metrics
  value: {0.3370780494168376}       # Required. Example: 20.90
  name: {ROUGE-1}  
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Long-paper-summarization-pegasus-x-b

This model is a fine-tuned version of [google/pegasus-x-base](https://huggingface.co/google/pegasus-x-base) on the arxiv-summarization dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7262

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 390
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.401         | 0.33  | 390  | 2.3985          |
| 2.5444        | 0.67  | 780  | 2.2461          |
| 2.4849        | 1.0   | 1170 | 2.2690          |
| 2.5735        | 1.33  | 1560 | 2.3334          |
| 2.7045        | 1.66  | 1950 | 2.4330          |
| 2.8939        | 2.0   | 2340 | 2.5461          |
| 3.0773        | 2.33  | 2730 | 2.6502          |
| 3.2149        | 2.66  | 3120 | 2.7039          |
| 3.2844        | 3.0   | 3510 | 2.7262          |


### Test Data Performance

{'rouge1': 0.3370780494168376, 'rouge2': 0.09813617709429612, 'rougeL': 0.19901299825841634, 'rougeLsum': 0.28144444244239153}

### Framework versions

- Transformers 4.32.1
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.2