--- base_model: nghuyong/ernie-2.0-base-en tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ernie-2.0-base-en results: [] --- # ernie-2.0-base-en This model is a fine-tuned version of [nghuyong/ernie-2.0-base-en](https://huggingface.co/nghuyong/ernie-2.0-base-en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2022 - Precision: 0.7745 - Recall: 0.8255 - F1: 0.7992 - Accuracy: 0.9392 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2221 | 1.0 | 2078 | 0.2066 | 0.7130 | 0.8024 | 0.7551 | 0.9309 | | 0.1813 | 2.0 | 4156 | 0.1972 | 0.7573 | 0.8224 | 0.7885 | 0.9362 | | 0.1397 | 3.0 | 6234 | 0.2022 | 0.7745 | 0.8255 | 0.7992 | 0.9392 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1