--- license: llama2 library_name: peft tags: - generated_from_trainer base_model: codellama/CodeLlama-7b-hf model-index: - name: out/test results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: codellama/CodeLlama-7b-hf model_type: LlamaForCausalLM tokenizer_type: CodeLlamaTokenizer load_in_8bit: true load_in_4bit: false strict: false datasets: - path: TristanBehrens/MusicCode_JSFakes_2024_Compose type: system_prompt: "" system_format: "" format: "[INST] {instruction} [/INST]" no_input_format: "[INST] {instruction} [/INST]" dataset_prepared_path: val_set_size: 0.05 output_dir: ./out/test sequence_len: 16384 sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 4 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: eval_sample_packing: False warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# out/test This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0553 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1833 | 0.06 | 1 | 0.1833 | | 0.175 | 0.29 | 5 | 0.1681 | | 0.1172 | 0.57 | 10 | 0.1097 | | 0.0917 | 0.86 | 15 | 0.0878 | | 0.0779 | 1.11 | 20 | 0.0750 | | 0.0706 | 1.4 | 25 | 0.0682 | | 0.0642 | 1.69 | 30 | 0.0635 | | 0.0617 | 1.97 | 35 | 0.0609 | | 0.0602 | 2.21 | 40 | 0.0588 | | 0.0574 | 2.5 | 45 | 0.0573 | | 0.0565 | 2.79 | 50 | 0.0563 | | 0.0561 | 3.03 | 55 | 0.0558 | | 0.0566 | 3.31 | 60 | 0.0554 | | 0.0551 | 3.6 | 65 | 0.0553 | ### Framework versions - PEFT 0.9.1.dev0 - Transformers 4.39.0.dev0 - Pytorch 2.2.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.0