File size: 1,475 Bytes
0b8aa90
711c575
 
 
 
 
 
 
 
0b8aa90
711c575
0b8aa90
711c575
 
 
0b8aa90
711c575
 
 
 
0b8aa90
711c575
 
 
 
 
0b8aa90
711c575
 
 
 
 
 
 
 
 
0b8aa90
711c575
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
slurm submission log: 2024-05-30 23:53:13.187539
created following sbatch script: 

###############################

#!/bin/bash

#SBATCH --account=nlp
#SBATCH --cpus-per-task=16
#SBATCH --dependency=afterok:7673212
#SBATCH --gres=gpu:1
#SBATCH --job-name=tthrush-job-3043295
#SBATCH --mem=60G
#SBATCH --nodelist=sphinx1
#SBATCH --open-mode=append
#SBATCH --output=/juice5/scr5/tthrush/pretraining-coreset-selection/llm_pretraining/paper_writeup_tests/ordinal_ph_proj/llms/pythia-70m_xnli_es_1/eval_job_output.txt
#SBATCH --partition=sphinx
#SBATCH --time=14-0

# activate your desired anaconda environment
. /nlp/scr/tthrush/miniconda3/envs/pretraining-coreset-selection/etc/profile.d/conda.sh ; conda activate pretraining-coreset-selection

# cd to working directory
cd .

# launch commands
srun --unbuffered run_as_child_processes 'lm_eval --model hf --model_args pretrained=/juice5/scr5/tthrush/pretraining-coreset-selection/llm_pretraining/paper_writeup_tests/ordinal_ph_proj/llms/pythia-70m_xnli_es_1,revision=main,dtype=float16,trust_remote_code=True --tasks piqa,arc_easy,xnli_en,xnli_fr,xnli_de,xnli_es,sciq,lambada --device cuda --output_path /juice5/scr5/tthrush/pretraining-coreset-selection/llm_pretraining/paper_writeup_tests/ordinal_ph_proj/llms/pythia-70m_xnli_es_1/perf'

###############################

submission to slurm complete!


###############################
slurm submission output

Submitted batch job 7673213



###############################