File size: 2,986 Bytes
774b33d 54b4634 774b33d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
base_model: Orion-zhen/Meissa-Qwen2.5-7B-Instruct
datasets:
- anthracite-org/stheno-filtered-v1.1
- MinervaAI/Aesir-Preview
- Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
- anthracite-org/nopm_claude_writing_fixed
- Gryphe/Sonnet3.5-Charcard-Roleplay
- nothingiisreal/DirtyWritingPrompts
- Orion-zhen/tagged-pixiv-novel
language:
- zh
- en
license: gpl-3.0
pipeline_tag: text-generation
tags:
- llama-cpp
- gguf-my-repo
---
# Triangle104/Meissa-Qwen2.5-7B-Instruct-Q8_0-GGUF
This model was converted to GGUF format from [`Orion-zhen/Meissa-Qwen2.5-7B-Instruct`](https://huggingface.co/Orion-zhen/Meissa-Qwen2.5-7B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Orion-zhen/Meissa-Qwen2.5-7B-Instruct) for more details on the model.
---
Model details:
-
Meissa is designated Lambda Orionis, forms Orion's head, and is a multiple star with a combined apparent magnitude of 3.33. Its name means the "shining one".
This model is fine tuned over writing and role playing datasets (maybe the first on qwen2.5-7b), aiming to enhance model's performance in novel writing and roleplaying.
The model is fine-tuned over Orion-zhen/Qwen2.5-7B-Instruct-Uncensored
Training details
I used SFT method. Datasets used are listed below:
anthracite-org/stheno-filtered-v1.1
MinervaAI/Aesir-Preview
Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
anthracite-org/nopm_claude_writing_fixed
Gryphe/Sonnet3.5-Charcard-Roleplay
nothingiisreal/DirtyWritingPrompts
Orion-zhen/tagged-pixiv-novel
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Meissa-Qwen2.5-7B-Instruct-Q8_0-GGUF --hf-file meissa-qwen2.5-7b-instruct-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Meissa-Qwen2.5-7B-Instruct-Q8_0-GGUF --hf-file meissa-qwen2.5-7b-instruct-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Meissa-Qwen2.5-7B-Instruct-Q8_0-GGUF --hf-file meissa-qwen2.5-7b-instruct-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Meissa-Qwen2.5-7B-Instruct-Q8_0-GGUF --hf-file meissa-qwen2.5-7b-instruct-q8_0.gguf -c 2048
```
|