File size: 3,478 Bytes
1054607
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54ac645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1054607
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
base_model: allura-org/MS-Meadowlark-22B
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
license: other
license_name: mrl
license_link: https://mistral.ai/licenses/MRL-0.1.md
---

# Triangle104/MS-Meadowlark-22B-Q4_K_M-GGUF
This model was converted to GGUF format from [`allura-org/MS-Meadowlark-22B`](https://huggingface.co/allura-org/MS-Meadowlark-22B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/allura-org/MS-Meadowlark-22B) for more details on the model.

Model details:
-
A roleplay and storywriting model based on Mistral Small 22B.

GGUF models: https://huggingface.co/mradermacher/MS-Meadowlark-22B-GGUF/

EXL2 models: https://huggingface.co/CalamitousFelicitousness/MS-Meadowlark-22B-exl2

Datasets used in this model:

    Dampfinchen/Creative_Writing_Multiturn at 16k
    Fizzarolli/rosier-dataset + Alfitaria/body-inflation-org at 16k
    ToastyPigeon/SpringDragon at 8k

Each dataset was trained separately onto Mistral Small Instruct, and then the component models were merged along with nbeerbower/Mistral-Small-Gutenberg-Doppel-22B to create Meadowlark.

I tried different blends of the component models, and this one seems to be the most stable while retaining creativity and unpredictability added by the trained data.
Instruct Format

Rosier/bodyinf and SpringDragon were trained in completion format. This model should work with Kobold Lite in Adventure Mode and Story Mode.

Creative_Writing_Multiturn and Gutenberg-Doppel were trained using the official instruct format of Mistral Small Instruct:

<s>[INST] {User message}[/INST] {Assistant response}</s>

This is the Mistral Small V2&V3 preset in SillyTavern and Kobold Lite.

For SillyTavern in particular I've had better luck getting good output from Mistral Small using a custom instruct template that formats the assembled context as a single user turn. This prevents SillyTavern from confusing the model by assembling user/assistant turns in a nonstandard way. Note: This preset is not compatible with Stepped Thinking, use the Mistral V2&V3 preset for that.

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/MS-Meadowlark-22B-Q4_K_M-GGUF --hf-file ms-meadowlark-22b-q4_k_m.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/MS-Meadowlark-22B-Q4_K_M-GGUF --hf-file ms-meadowlark-22b-q4_k_m.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/MS-Meadowlark-22B-Q4_K_M-GGUF --hf-file ms-meadowlark-22b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/MS-Meadowlark-22B-Q4_K_M-GGUF --hf-file ms-meadowlark-22b-q4_k_m.gguf -c 2048
```