Triangle104 commited on
Commit
6f882c3
1 Parent(s): ef52630

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +371 -0
README.md CHANGED
@@ -13,6 +13,377 @@ tags:
13
  This model was converted to GGUF format from [`TechxGenus/CursorCore-QW2.5-7B`](https://huggingface.co/TechxGenus/CursorCore-QW2.5-7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
14
  Refer to the [original model card](https://huggingface.co/TechxGenus/CursorCore-QW2.5-7B) for more details on the model.
15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  ## Use with llama.cpp
17
  Install llama.cpp through brew (works on Mac and Linux)
18
 
 
13
  This model was converted to GGUF format from [`TechxGenus/CursorCore-QW2.5-7B`](https://huggingface.co/TechxGenus/CursorCore-QW2.5-7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
14
  Refer to the [original model card](https://huggingface.co/TechxGenus/CursorCore-QW2.5-7B) for more details on the model.
15
 
16
+ ---
17
+ Model details:
18
+ -
19
+ CursorCore: Assist Programming through Aligning Anything
20
+
21
+ CursorCore: Assist Programming through Aligning Anything
22
+ Introduction
23
+ Models
24
+ Usage
25
+ 1) Normal chat
26
+ 2) Assistant-Conversation
27
+ 3) Web Demo
28
+ Future Work
29
+ Citation
30
+ Contribution
31
+
32
+ Introduction
33
+
34
+ CursorCore is a series of open-source models designed for AI-assisted programming. It aims to support features such as automated editing and inline chat, replicating the core abilities of closed-source AI-assisted programming tools like Cursor. This is achieved by aligning data generated through Programming-Instruct. Please read our paper to learn more.
35
+
36
+ conversation
37
+
38
+ CursorWeb
39
+ Models
40
+
41
+ Our models have been open-sourced on Hugging Face. You can access our models here: CursorCore-Series. We also provide pre-quantized weights for GPTQ and AWQ here: CursorCore-Quantization
42
+ Usage
43
+
44
+ Here are some examples of how to use our model:
45
+ 1) Normal chat
46
+
47
+ Script:
48
+
49
+ import torch
50
+ from transformers import AutoTokenizer, AutoModelForCausalLM
51
+
52
+ tokenizer = AutoTokenizer.from_pretrained("TechxGenus/CursorCore-Yi-9B")
53
+ model = AutoModelForCausalLM.from_pretrained(
54
+ "TechxGenus/CursorCore-Yi-9B",
55
+ torch_dtype=torch.bfloat16,
56
+ device_map="auto"
57
+ )
58
+
59
+ messages = [
60
+ {"role": "user", "content": "Hi!"},
61
+ ]
62
+ prompt = tokenizer.apply_chat_template(
63
+ messages,
64
+ tokenize=False,
65
+ add_generation_prompt=True
66
+ )
67
+
68
+ inputs = tokenizer.encode(prompt, return_tensors="pt")
69
+ outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=512)
70
+ print(tokenizer.decode(outputs[0]))
71
+
72
+ Output:
73
+
74
+ <|im_start|>system
75
+ You are a helpful programming assistant.<|im_end|>
76
+ <|im_start|>user
77
+ Hi!<|im_end|>
78
+ <|im_start|>assistant
79
+ Hello! I'm an AI language model and I can help you with any programming questions you might have. What specific problem or task are you trying to solve?<|im_end|>
80
+
81
+ 2) Assistant-Conversation
82
+
83
+ In our work, we introduce a new framework of AI-assisted programming task. It is designed for aligning anything during programming process, used for the implementation of features like Tab and Inline Chat.
84
+
85
+ Script 1:
86
+
87
+ import torch
88
+ from transformers import AutoTokenizer, AutoModelForCausalLM
89
+ from eval.utils import prepare_input_for_wf
90
+
91
+ tokenizer = AutoTokenizer.from_pretrained("TechxGenus/CursorCore-Yi-9B")
92
+ model = AutoModelForCausalLM.from_pretrained(
93
+ "TechxGenus/CursorCore-Yi-9B",
94
+ torch_dtype=torch.bfloat16,
95
+ device_map="auto"
96
+ )
97
+ sample = {
98
+ "history": [
99
+ {
100
+ "type": "code",
101
+ "lang": "python",
102
+ "code": """def quick_sort(arr):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)"""
103
+ }
104
+ ],
105
+ "current": {
106
+ "type": "code",
107
+ "lang": "python",
108
+ "code": """def quick_sort(array):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)"""
109
+ },
110
+ "user": ""
111
+ }
112
+
113
+ prompt = tokenizer.apply_chat_template(
114
+ prepare_input_for_wf(sample),
115
+ tokenize=False,
116
+ chat_template="assistant-conversation",
117
+ add_generation_prompt=True
118
+ )
119
+
120
+ inputs = tokenizer.encode(prompt, return_tensors="pt")
121
+ outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=512, do_sample=False)
122
+ print(tokenizer.decode(outputs[0]))
123
+
124
+ Output 1:
125
+
126
+ <|im_start|>system
127
+ You are a helpful programming assistant.<|im_end|>
128
+ <|im_start|>history
129
+ ```python
130
+ def quick_sort(arr):
131
+ if len(arr) <= 1:
132
+ return arr
133
+ pivot = arr[len(arr) // 2]
134
+ left = [x for x in arr if x < pivot]
135
+ middle = [x for x in arr if x == pivot]
136
+ right = [x for x in arr if x > pivot]
137
+ return quick_sort(left) + middle + quick_sort(right)
138
+ ```<|im_end|>
139
+ <|im_start|>current
140
+ ```python
141
+ def quick_sort(array):
142
+ if len(arr) <= 1:
143
+ return arr
144
+ pivot = arr[len(arr) // 2]
145
+ left = [x for x in arr if x < pivot]
146
+ middle = [x for x in arr if x == pivot]
147
+ right = [x for x in arr if x > pivot]
148
+ return quick_sort(left) + middle + quick_sort(right)
149
+ ```<|im_end|>
150
+ <|im_start|>assistant
151
+ <|next_start|>```python
152
+ def quick_sort(array):
153
+ if len(array) <= 1:
154
+ return array
155
+ pivot = array[len(array) // 2]
156
+ left = [x for x in array if x < pivot]
157
+ middle = [x for x in array if x == pivot]
158
+ right = [x for x in array if x > pivot]
159
+ return quick_sort(left) + middle + quick_sort(right)
160
+ ```<|next_end|>
161
+ The user has provided a revised code change that corrects the parameter name from `arr` to `array` in the `quick_sort` function. This change ensures consistency in the function definition and avoids potential confusion or errors.
162
+
163
+ To implement this, we will:
164
+ 1. Update the parameter name in the function definition from `arr` to `array`.
165
+ 2. Ensure that all references to `arr` within the function are updated to `array`.
166
+
167
+ This will make the function definition and internal references consistent, improving code readability and maintainability.<|im_end|>
168
+
169
+ Script 2:
170
+
171
+ import torch
172
+ from transformers import AutoTokenizer, AutoModelForCausalLM
173
+ from eval.utils import prepare_input_for_wf
174
+
175
+ tokenizer = AutoTokenizer.from_pretrained("TechxGenus/CursorCore-Yi-9B")
176
+ model = AutoModelForCausalLM.from_pretrained(
177
+ "TechxGenus/CursorCore-Yi-9B",
178
+ torch_dtype=torch.bfloat16,
179
+ device_map="auto"
180
+ )
181
+ sample = {
182
+ "history": [],
183
+ "current": {
184
+ "type": "code",
185
+ "lang": "python",
186
+ "code": """def quick_sort(array):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)"""
187
+ },
188
+ "user": "Add Docstring."
189
+ }
190
+
191
+ prompt = tokenizer.apply_chat_template(
192
+ prepare_input_for_wf(sample),
193
+ tokenize=False,
194
+ chat_template="assistant-conversation",
195
+ add_generation_prompt=True
196
+ )
197
+
198
+ inputs = tokenizer.encode(prompt, return_tensors="pt")
199
+ outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=512, do_sample=False)
200
+ print(tokenizer.decode(outputs[0]))
201
+
202
+ Output 2:
203
+
204
+ <|im_start|>system
205
+ You are a helpful programming assistant.<|im_end|>
206
+ <|im_start|>current
207
+ ```python
208
+ def quick_sort(array):
209
+ if len(arr) <= 1:
210
+ return arr
211
+ pivot = arr[len(arr) // 2]
212
+ left = [x for x in arr if x < pivot]
213
+ middle = [x for x in arr if x == pivot]
214
+ right = [x for x in arr if x > pivot]
215
+ return quick_sort(left) + middle + quick_sort(right)
216
+ ```<|im_end|>
217
+ <|im_start|>user
218
+ Add Docstring.<|im_end|>
219
+ <|im_start|>assistant
220
+ <|next_start|>```python
221
+ def quick_sort(array):
222
+ """
223
+ This is an implementation of the quick sort algorithm.
224
+ """
225
+ if len(arr) <= 1:
226
+ return arr
227
+ pivot = arr[len(arr) // 2]
228
+ left = [x for x in arr if x < pivot]
229
+ middle = [x for x in arr if x == pivot]
230
+ right = [x for x in arr if x > pivot]
231
+ return quick_sort(left) + middle + quick_sort(right)
232
+ ```<|next_end|><|im_end|>
233
+
234
+ For models in Locate-and-Change (LC) and Search-and-Replace (SR) formats, the output examples are as follows:
235
+
236
+ Script for LC:
237
+
238
+ import torch
239
+ from transformers import AutoTokenizer, AutoModelForCausalLM
240
+ from eval.utils import prepare_input_for_lc
241
+
242
+ tokenizer = AutoTokenizer.from_pretrained("TechxGenus/CursorCore-Yi-1.5B-LC")
243
+ model = AutoModelForCausalLM.from_pretrained(
244
+ "TechxGenus/CursorCore-Yi-1.5B-LC",
245
+ torch_dtype=torch.bfloat16,
246
+ device_map="auto"
247
+ )
248
+ sample = {
249
+ "history": [],
250
+ "current": {
251
+ "type": "code",
252
+ "lang": "python",
253
+ "code": """def quick_sort(array):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)"""
254
+ },
255
+ "user": "Add Docstring."
256
+ }
257
+
258
+ prompt = tokenizer.apply_chat_template(
259
+ prepare_input_for_lc(sample),
260
+ tokenize=False,
261
+ chat_template="assistant-conversation",
262
+ add_generation_prompt=True
263
+ )
264
+
265
+ inputs = tokenizer.encode(prompt, return_tensors="pt")
266
+ outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=512, do_sample=False)
267
+ print(tokenizer.decode(outputs[0]))
268
+
269
+ Output for LC:
270
+
271
+ <|im_start|>system
272
+ You are a helpful programming assistant.<|im_end|>
273
+ <|im_start|>current
274
+ ```python
275
+ 1 def quick_sort(array):
276
+ 2 if len(arr) <= 1:
277
+ 3 return arr
278
+ 4 pivot = arr[len(arr) // 2]
279
+ 5 left = [x for x in arr if x < pivot]
280
+ 6 middle = [x for x in arr if x == pivot]
281
+ 7 right = [x for x in arr if x > pivot]
282
+ 8 return quick_sort(left) + middle + quick_sort(right)
283
+ ```<|im_end|>
284
+ <|im_start|>user
285
+ Add Docstring.<|im_end|>
286
+ <|im_start|>assistant
287
+ <|next_start|>1,1
288
+ ```
289
+ '''This function will sort an array using quick sort algorithm'''
290
+ ```<|next_end|>
291
+ To enhance the readability and maintainability of the code, we should add a docstring to the `quick_sort` function. A docstring provides a clear description of what the function does, which is particularly useful for other developers who might use or modify this code in the future.
292
+
293
+ The docstring will be added immediately after the function definition, explaining that the function uses the quick sort algorithm to sort an array. This will make the code more self-explanatory and easier to understand.
294
+
295
+ Here's the plan:
296
+ 1. Add a docstring at the beginning of the `quick_sort` function.
297
+ 2. Ensure the docstring is clear and concise, describing the purpose of the function.
298
+
299
+ This modification will improve the code's documentation without altering its functionality.<|im_end|>
300
+
301
+ Script for SR:
302
+
303
+ import torch
304
+ from transformers import AutoTokenizer, AutoModelForCausalLM
305
+ from eval.utils import prepare_input_for_sr
306
+
307
+ tokenizer = AutoTokenizer.from_pretrained("TechxGenus/CursorCore-Yi-1.5B-SR")
308
+ model = AutoModelForCausalLM.from_pretrained(
309
+ "TechxGenus/CursorCore-Yi-1.5B-SR",
310
+ torch_dtype=torch.bfloat16,
311
+ device_map="auto"
312
+ )
313
+ sample = {
314
+ "history": [],
315
+ "current": {
316
+ "type": "code",
317
+ "lang": "python",
318
+ "code": """def quick_sort(array):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)"""
319
+ },
320
+ "user": "Add Docstring."
321
+ }
322
+
323
+ prompt = tokenizer.apply_chat_template(
324
+ prepare_input_for_sr(sample),
325
+ tokenize=False,
326
+ chat_template="assistant-conversation",
327
+ add_generation_prompt=True
328
+ )
329
+
330
+ inputs = tokenizer.encode(prompt, return_tensors="pt")
331
+ outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=512, do_sample=False)
332
+ print(tokenizer.decode(outputs[0]))
333
+
334
+ Output for SR:
335
+
336
+ <|im_start|>system
337
+ You are a helpful programming assistant.<|im_end|>
338
+ <|im_start|>current
339
+ ```python
340
+ def quick_sort(array):
341
+ if len(arr) <= 1:
342
+ return arr
343
+ pivot = arr[len(arr) // 2]
344
+ left = [x for x in arr if x < pivot]
345
+ middle = [x for x in arr if x == pivot]
346
+ right = [x for x in arr if x > pivot]
347
+ return quick_sort(left) + middle + quick_sort(right)
348
+ ```<|im_end|>
349
+ <|im_start|>user
350
+ Add Docstring.<|im_end|>
351
+ <|im_start|>assistant
352
+ <|next_start|>```python
353
+ def quick_sort(array):
354
+ <|search_and_replace|>
355
+ def quick_sort(array):
356
+ """
357
+ This function implements quick sort algorithm
358
+ """
359
+ ```<|next_end|><|im_end|>
360
+
361
+ 3) Web Demo
362
+
363
+ We create a web demo for CursorCore. Please visit CursorWeb for more details.
364
+ Future Work
365
+
366
+ CursorCore is still in a very early stage, and lots of work is needed to achieve a better user experience. For example:
367
+
368
+ Repository-level editing support
369
+ Better and faster editing formats
370
+ Better user interface and presentation
371
+ ...
372
+
373
+ Citation
374
+
375
+ @article{jiang2024cursorcore,
376
+ title = {CursorCore: Assist Programming through Aligning Anything},
377
+ author = {Hao Jiang and Qi Liu and Rui Li and Shengyu Ye and Shijin Wang},
378
+ year = {2024},
379
+ journal = {arXiv preprint arXiv: 2410.07002}
380
+ }
381
+
382
+ Contribution
383
+
384
+ Contributions are welcome! If you find any bugs or have suggestions for improvements, please open an issue or submit a pull request.
385
+
386
+ ---
387
  ## Use with llama.cpp
388
  Install llama.cpp through brew (works on Mac and Linux)
389