File size: 9,253 Bytes
50bf950
f855da9
 
 
50bf950
 
 
 
f855da9
50bf950
 
 
 
 
 
 
 
 
1414999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50bf950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
---
license: other
license_name: katanemo-research
license_link: https://huggingface.co/katanemo/Arch-Function-3B/blob/main/LICENSE
base_model: katanemo/Arch-Function-3B
language:
- en
pipeline_tag: text-generation
library_name: transformers
tags:
- llama-cpp
- gguf-my-repo
---

# Triangle104/Arch-Function-3B-Q5_K_S-GGUF
This model was converted to GGUF format from [`katanemo/Arch-Function-3B`](https://huggingface.co/katanemo/Arch-Function-3B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/katanemo/Arch-Function-3B) for more details on the model.

---
Model details:
-
The Katanemo Arch-Function collection of large language models (LLMs) is a collection state-of-the-art (SOTA) LLMs specifically designed for function calling tasks. The models are designed to understand complex function signatures, identify required parameters, and produce accurate function call outputs based on natural language prompts. Achieving performance on par with GPT-4, these models set a new benchmark in the domain of function-oriented tasks, making them suitable for scenarios where automated API interaction and function execution is crucial.

In summary, the Katanemo Arch-Function collection demonstrates:

    State-of-the-art performance in function calling
    Accurate parameter identification and suggestion, even in ambiguous or incomplete inputs
    High generalization across multiple function calling use cases, from API interactions to automated backend tasks.
    Optimized low-latency, high-throughput performance, making it suitable for real-time, production environments.

Arch-Function is the core LLM used in then open source Arch Gateway to seamlessly integrate user prompts with developers APIs
Key Features
Functionality 	Definition
Single Function Calling 	Call only one function per user query
Parallel Function Calling 	Call the same function multiple times but with different set of parameter values
Multiple Function Calling 	Call different functions per user query
Parallel & Multiple 	Perform both parallel and multiple function calling
Training Details

Katanemo Arch-Function collection is built on top of the Qwen 2.5. A blog with technical details leading to our models will be published soon.
Performance Benchmarks

We evaluate Katanemo Arch-Function series on the Berkeley Function-Calling Leaderboard (BFCL). For each model family, we select the one with the highest rank. The results are shwon below:
Rank 	Model 	Overall 	Single Turn 	Multi Turn 	Hallucination
Non-live (AST) 	Non-live (Exec) 	Live (AST) 	Overall 	Relevance 	Irrelevance
1 	GPT-4-turbo-2024-04-09 	59.49% 	82.65% 	83.80% 	73.39% 	21.62% 	70.73% 	79.79%
3 	xLAM-8x22b-r 	59.13% 	89.75% 	89.32% 	72.81% 	15.62% 	97.56% 	75.23%
	Arch-Function-7B 	57.48% 	87.50% 	86.80% 	72.19% 	13.75% 	82.93% 	79.54%
	Arch-Function-3B 	56.23% 	85.10% 	89.16% 	70.72% 	12.28% 	90.24% 	73.98%
7 	mistral-large-2407 	55.82% 	84.12% 	83.09% 	67.17% 	20.50% 	78.05% 	48.93%
9 	Claude-3.5-Sonnet-20240620 	54.83% 	70.35% 	66.34% 	71.39% 	23.5% 	63.41% 	75.91%
	Arch-Function-1.5B 	53.61% 	82.60% 	87.36% 	68.19% 	8.62% 	87.80% 	75.90%
11 	o1-mini-2024-09-12 	53.43% 	75.48% 	76.86% 	71.17% 	11.00% 	46.34% 	88.07%
12 	Gemini-1.5-Flash-Preview-0514 	53.01% 	77.10% 	71.23% 	71.17% 	13.12% 	60.98% 	76.15%
Requirements

The code of Arch-Function-3B has been in the Hugging Face transformers library and we advise you to install latest version:

pip install transformers>=4.37.0

How to use
-
We use the following example to illustrate how to use our model to perform function calling tasks. Please note that, our model works best with our provided prompt format. It allows us to extract JSON output that is similar to the function-calling mode of ChatGPT.
Single Turn Example

import json
from typing import Any, Dict, List
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "katanemo/Arch-Function-3B"
model = AutoModelForCausalLM.from_pretrained(
    model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Please use our provided prompt for best performance
TASK_PROMPT = """
You are a helpful assistant.
""".strip()

TOOL_PROMPT = """
# Tools

You may call one or more functions to assist with the user query.

You are provided with function signatures within <tools></tools> XML tags:
<tools>
{tool_text}
</tools>
""".strip()

FORMAT_PROMPT = """
For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
<tool_call>
{"name": <function-name>, "arguments": <args-json-object>}
</tool_call>
""".strip()

# Define available tools
get_weather_api = {
    "type": "function",
    "function": {
        "name": "get_weather",
        "description": "Get the current weather for a location",
        "parameters": {
            "type": "object",
            "properties": {
                "location": {
                    "type": "str",
                    "description": "The city and state, e.g. San Francisco, New York",
                },
                "unit": {
                    "type": "str",
                    "enum": ["celsius", "fahrenheit"],
                    "description": "The unit of temperature to return",
                },
            },
            "required": ["location"],
        },
    },
}

openai_format_tools = [get_weather_api]


def convert_tools(tools: List[Dict[str, Any]]):
    return "\n".join([json.dumps(tool) for tool in tools])

# Helper function to create the system prompt for our model
def format_prompt(tools: List[Dict[str, Any]]):
    tool_text = convert_tools(tools)

    return (
        TASK_PROMPT
        + "\n\n"
        + TOOL_PROMPT.format(tool_text=tool_text)
        + "\n\n"
        + FORMAT_PROMPT
        + "\n"
    )


system_prompt = format_prompt(openai_format_tools)

messages = [
    {"role": "system", "content": system_prompt},
    {"role": "user", "content": "What is the weather in Seattle?"},
]

inputs = tokenizer.apply_chat_template(
    messages, add_generation_prompt=True, return_tensors="pt"
).to(model.device)

outputs = model.generate(
    inputs,
    max_new_tokens=512,
    do_sample=False,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
)

response = tokenizer.decode(outputs[0][len(inputs[0]) :], skip_special_tokens=True)
print(response)

Then you should be able to see the following output string in JSON format:

<tool_call>
{"name": "get_weather", "arguments": {"location": "Seattle"}}
</tool_call>

Multi Turn Example
-
Upon getting results from functions, you can add it to the messages list as a user message and pass it to the model to get responses for users.

# Suppose we receive the following result from the function:
get_weather_api_result = {'name': 'get_weather', 'results': {'temperature': '62°', 'unit': 'fahrenheit'}}
execution_results = [get_weather_api_result]

def add_execution_results(messages: List[Dict[str, Any]], execution_results: List[Dict[str, Any]]):
    content = "\n".join([f"<tool_response>\n{json.dumps(result)}</tool_response>" for result in execution_results])
    messages.append({"role": "user", "content": content})
    return messages

messages = add_execution_results(messages, execution_results)

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)

outputs = model.generate(
    inputs,
    max_new_tokens=512,
    do_sample=False,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
)

response = tokenizer.decode(outputs[0][len(inputs[0]) :], skip_special_tokens=True)
print(response)

Then you should be able to see the following output:

The current temperature in Seattle is 62 degrees in Fahrenheit.

License
-
Katanemo Arch-Function collection is distributed under the Katanemo license.

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/Arch-Function-3B-Q5_K_S-GGUF --hf-file arch-function-3b-q5_k_s.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/Arch-Function-3B-Q5_K_S-GGUF --hf-file arch-function-3b-q5_k_s.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Arch-Function-3B-Q5_K_S-GGUF --hf-file arch-function-3b-q5_k_s.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/Arch-Function-3B-Q5_K_S-GGUF --hf-file arch-function-3b-q5_k_s.gguf -c 2048
```