TriadParty
commited on
Commit
•
8301ea3
1
Parent(s):
17288c1
Update README.md
Browse files
README.md
CHANGED
@@ -38,4 +38,22 @@ Finally, I made a blend of the data. General data is not included because it is
|
|
38 |
|
39 |
Raw text, full parameter training. The base uses long context yi-34b-200k. This is necessary to complete and understand an in-depth report.
|
40 |
|
41 |
-
Of course, I also did a sft. [This](https://huggingface.co/TriadParty/deepmoney-34b-200k-chat-evaluator) is the analyzer in my process – I haven’t broken down the qualitative and quantitative analysis yet, but I’m already blown away by how well it works.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
Raw text, full parameter training. The base uses long context yi-34b-200k. This is necessary to complete and understand an in-depth report.
|
40 |
|
41 |
+
Of course, I also did a sft. [This](https://huggingface.co/TriadParty/deepmoney-34b-200k-chat-evaluator) is the analyzer in my process – I haven’t broken down the qualitative and quantitative analysis yet, but I’m already blown away by how well it works.
|
42 |
+
|
43 |
+
|
44 |
+
### 1. 我想干什么?
|
45 |
+
当下大多数所谓的金融模型大多在公开知识上进行训练,但在实际的金融领域,这些公开知识对当前的市场可解释性往往严重不足。如果您感兴趣,可以了解一下凯恩斯、弗里德曼乃至当下行为金融学的各类主张。而据我观察,大多数金融模型无法对投资进行判断。因为它们都是在普通的教材、入门的分析师考试,乃至公司的公开报告上训练。我认为这对于投资的价值非常小。
|
46 |
+
你可以当我开玩笑,但事实是很多主观分析师的逻辑性可能还不如34b及以上的大模型来的严谨(当然不包括那些优秀的)。而每时每刻,市场都在变化,大量的新闻,海量的数据都是实时的,对于大多数散户们,与其等待蹩脚的分析师写出报告,为什么不用大模型制作一套pipeline呢?
|
47 |
+
在我的计划中,该模型是这套流程的基座模型,在我的计划中,信息搜集者、标的判断者、定性分析者定性分析者、定量分析者、数据提取者等模型都是该流程的一部分。但模型本身掌握大量的定性和定量方法毫无疑问是重要的。这就是这个模型诞生的理由。
|
48 |
+
|
49 |
+
### 2. 关于数据:
|
50 |
+
正如我刚才所说,很多公开知识的有效性都有些问题——但这并不意味着它们是错误的。在研报中很多研究方法背后的理论支撑也依赖这些知识。所以在我的训练中,我挑选了一些大学教材和一些专业书籍。数量不是很多但质量还不错。另外,我挑选了在2019-2023年12月的大量研究报告数据——这些报告的发布者多种多样,有传统的broke,也有专业研究机构。他们中的大多数是付费的,而且只对机构提供。但无论如何我通过各种各样的手段获取了它们。
|
51 |
+
|
52 |
+
如果你看过研报,尤其是高质量的那些,你会发现研报都是主观判断+定量分析,而定量分析中的数据支撑对于整个逻辑链条至关重要。为了提取这些数据(他们中的大多数以图形或者表格的形式出现),我尝试了很多多模态模型,过程非常痛苦,结论是cog-agent和emu2对于这类任务很有效。为了更好的提取信息,我制作了一套从研报上下文总结作为prompt一部分的流程。
|
53 |
+
|
54 |
+
最后,我把这些数据做了一个混合。并没有放入通识数据, 因为它就是为了greed而生的。而且行业研报中的知识足够全。
|
55 |
+
|
56 |
+
### 3:关于训练:
|
57 |
+
raw text,全参数训练。基座采用了长上下文的yi-34b-200k。这对于完成理解一篇深度报告是必须的。
|
58 |
+
|
59 |
+
当然,我也做了一次sft。这是我的流程中的分析者——目前还没有细分定性和定量分析,但它的效果已经让我大吃一惊了。
|