log_dir: "Models/LJSpeech" save_freq: 1 log_interval: 10 device: "cuda" epochs: 50 # number of finetuning epoch (1 hour of data) batch_size: 4 max_len: 200 # maximum number of frames pretrained_model: "/content/StyleTTS2/Models/tost-tts/tost-tts-v1.pth" second_stage_load_pretrained: true # set to true if the pre-trained model is for 2nd stage load_only_params: false # set to true if do not want to load epoch numbers and optimizer parameters F0_path: "Utils/JDC/bst.t7" ASR_config: "Utils/ASR/config.yml" ASR_path: "Utils/ASR/epoch_00080.pth" PLBERT_dir: 'Utils/PLBERT/' data_params: train_data: "Data/Train_list.txt" val_data: "Data/Val_list.txt" root_path: "Data" OOD_data: "Data/OOD_texts.txt" min_length: 50 # sample until texts with this size are obtained for OOD texts logger: "wandb" preprocess_params: sr: 24000 spect_params: n_fft: 2048 win_length: 1200 hop_length: 300 model_params: multispeaker: true dim_in: 64 hidden_dim: 512 max_conv_dim: 512 n_layer: 3 n_mels: 80 n_token: 178 # number of phoneme tokens max_dur: 50 # maximum duration of a single phoneme style_dim: 128 # style vector size dropout: 0.2 # config for decoder decoder: type: 'hifigan' # either hifigan or istftnet resblock_kernel_sizes: [3,7,11] upsample_rates : [10,5,3,2] upsample_initial_channel: 512 resblock_dilation_sizes: [[1,3,5], [1,3,5], [1,3,5]] upsample_kernel_sizes: [20,10,6,4] # speech language model config slm: model: 'microsoft/wavlm-base-plus' sr: 16000 # sampling rate of SLM hidden: 768 # hidden size of SLM nlayers: 13 # number of layers of SLM initial_channel: 64 # initial channels of SLM discriminator head # style diffusion model config diffusion: embedding_mask_proba: 0.1 # transformer config transformer: num_layers: 3 num_heads: 8 head_features: 64 multiplier: 2 # diffusion distribution config dist: sigma_data: 0.2 # placeholder for estimate_sigma_data set to false estimate_sigma_data: true # estimate sigma_data from the current batch if set to true mean: -3.0 std: 1.0 loss_params: lambda_mel: 5. # mel reconstruction loss lambda_gen: 1. # generator loss lambda_slm: 1. # slm feature matching loss lambda_mono: 1. # monotonic alignment loss (TMA) lambda_s2s: 1. # sequence-to-sequence loss (TMA) lambda_F0: 1. # F0 reconstruction loss lambda_norm: 1. # norm reconstruction loss lambda_dur: 1. # duration loss lambda_ce: 20. # duration predictor probability output CE loss lambda_sty: 1. # style reconstruction loss lambda_diff: 1. # score matching loss diff_epoch: 10 # style diffusion starting epoch joint_epoch: 30 # joint training starting epoch optimizer_params: lr: 0.0001 # general learning rate bert_lr: 0.00001 # learning rate for PLBERT ft_lr: 0.0001 # learning rate for acoustic modules slmadv_params: min_len: 400 # minimum length of samples max_len: 500 # maximum length of samples batch_percentage: 0.5 # to prevent out of memory, only use half of the original batch size iter: 10 # update the discriminator every this iterations of generator update thresh: 5 # gradient norm above which the gradient is scaled scale: 0.01 # gradient scaling factor for predictors from SLM discriminators sig: 1.5 # sigma for differentiable duration modeling