--- license: apache-2.0 base_model: bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: multibertfinetuned2209 results: [] --- # multibertfinetuned2209 This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3973 - Precision: 0.7567 - Recall: 0.7607 - F1: 0.7587 - Accuracy: 0.9064 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 118 | 0.4058 | 0.7597 | 0.7343 | 0.7468 | 0.9032 | | No log | 2.0 | 236 | 0.3973 | 0.7567 | 0.7607 | 0.7587 | 0.9064 | | No log | 3.0 | 354 | 0.4153 | 0.7540 | 0.7677 | 0.7608 | 0.9062 | | No log | 4.0 | 472 | 0.4656 | 0.7645 | 0.7466 | 0.7555 | 0.9082 | | 0.0692 | 5.0 | 590 | 0.4940 | 0.7594 | 0.7554 | 0.7574 | 0.9043 | | 0.0692 | 6.0 | 708 | 0.5446 | 0.7668 | 0.7484 | 0.7575 | 0.9059 | | 0.0692 | 7.0 | 826 | 0.5732 | 0.7818 | 0.7420 | 0.7613 | 0.9069 | | 0.0692 | 8.0 | 944 | 0.5668 | 0.7844 | 0.7431 | 0.7632 | 0.9082 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3