File size: 2,217 Bytes
9b0faed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
base_model: bert-base-multilingual-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: multibertfinetuned2209
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# multibertfinetuned2209
This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3973
- Precision: 0.7567
- Recall: 0.7607
- F1: 0.7587
- Accuracy: 0.9064
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 118 | 0.4058 | 0.7597 | 0.7343 | 0.7468 | 0.9032 |
| No log | 2.0 | 236 | 0.3973 | 0.7567 | 0.7607 | 0.7587 | 0.9064 |
| No log | 3.0 | 354 | 0.4153 | 0.7540 | 0.7677 | 0.7608 | 0.9062 |
| No log | 4.0 | 472 | 0.4656 | 0.7645 | 0.7466 | 0.7555 | 0.9082 |
| 0.0692 | 5.0 | 590 | 0.4940 | 0.7594 | 0.7554 | 0.7574 | 0.9043 |
| 0.0692 | 6.0 | 708 | 0.5446 | 0.7668 | 0.7484 | 0.7575 | 0.9059 |
| 0.0692 | 7.0 | 826 | 0.5732 | 0.7818 | 0.7420 | 0.7613 | 0.9069 |
| 0.0692 | 8.0 | 944 | 0.5668 | 0.7844 | 0.7431 | 0.7632 | 0.9082 |
### Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
|