Text Generation
Transformers
PyTorch
Safetensors
English
llama
text-generation-inference
Inference Endpoints
PY007 commited on
Commit
ddde0ed
β€’
1 Parent(s): f895e4e

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -0
README.md ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - cerebras/SlimPajama-627B
5
+ - bigcode/starcoderdata
6
+ language:
7
+ - en
8
+ ---
9
+ <div align="center">
10
+
11
+ # TinyLlama-1.1B
12
+ </div>
13
+
14
+ https://github.com/jzhang38/TinyLlama
15
+
16
+ The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs πŸš€πŸš€. The training has started on 2023-09-01.
17
+
18
+ <div align="center">
19
+ <img src="./TinyLlama_logo.png" width="300"/>
20
+ </div>
21
+
22
+ We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
23
+
24
+ #### This Model
25
+ This is the chat model finetuned on [PY007/TinyLlama-1.1B-intermediate-step-240k-503b](https://huggingface.co/PY007/TinyLlama-1.1B-intermediate-step-240k-503b). The dataset used is [openassistant-guananco](https://huggingface.co/datasets/timdettmers/openassistant-guanaco).
26
+
27
+ #### How to use
28
+ You will need the transformers>=4.31
29
+ Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information.
30
+ ```
31
+ from transformers import AutoTokenizer
32
+ import transformers
33
+ import torch
34
+ model = "PY007/TinyLlama-1.1B-step-50K-105b"
35
+ tokenizer = AutoTokenizer.from_pretrained(model)
36
+ pipeline = transformers.pipeline(
37
+ "text-generation",
38
+ model=model,
39
+ torch_dtype=torch.float16,
40
+ device_map="auto",
41
+ )
42
+
43
+ sequences = pipeline(
44
+ 'The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs πŸš€πŸš€. The training has started on 2023-09-01.',
45
+ do_sample=True,
46
+ top_k=10,
47
+ num_return_sequences=1,
48
+ repetition_penalty=1.5,
49
+ eos_token_id=tokenizer.eos_token_id,
50
+ max_length=500,
51
+ )
52
+ for seq in sequences:
53
+ print(f"Result: {seq['generated_text']}")
54
+ ```