--- license: apache-2.0 model-index: - name: tigerbot-7b-sft results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 41.64 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-7b-sft name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 60.56 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-7b-sft name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 29.89 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-7b-sft name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 58.18 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-7b-sft name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 63.54 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-7b-sft name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 6.29 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-7b-sft name: Open LLM Leaderboard ---
TigerBot

A cutting-edge foundation for your very own LLM.

🌐 TigerBot • 🤗 Hugging Face

## Github https://github.com/TigerResearch/TigerBot ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM from accelerate import infer_auto_device_map, dispatch_model from accelerate.utils import get_balanced_memory tokenizer = AutoTokenizer.from_pretrained("TigerResearch/tigerbot-7b-sft-v1") model = AutoModelForCausalLM.from_pretrained("TigerResearch/tigerbot-7b-sft-v1") max_memory = get_balanced_memory(model) device_map = infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["BloomBlock"]) model = dispatch_model(model, device_map=device_map, offload_buffers=True) device = torch.cuda.current_device() tok_ins = "\n\n### Instruction:\n" tok_res = "\n\n### Response:\n" prompt_input = tok_ins + "{instruction}" + tok_res input_text = "What is the next number after this list: [1, 2, 3, 5, 8, 13, 21]" input_text = prompt_input.format_map({'instruction': input_text}) max_input_length = 512 max_generate_length = 1024 generation_kwargs = { "top_p": 0.95, "temperature": 0.8, "max_length": max_generate_length, "eos_token_id": tokenizer.eos_token_id, "pad_token_id": tokenizer.pad_token_id, "early_stopping": True, "no_repeat_ngram_size": 4, } inputs = tokenizer(input_text, return_tensors='pt', truncation=True, max_length=max_input_length) inputs = {k: v.to(device) for k, v in inputs.items()} output = model.generate(**inputs, **generation_kwargs) answer = '' for tok_id in output[0][inputs['input_ids'].shape[1]:]: if tok_id != tokenizer.eos_token_id: answer += tokenizer.decode(tok_id) print(answer) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TigerResearch__tigerbot-7b-sft) | Metric |Value| |---------------------------------|----:| |Avg. |43.35| |AI2 Reasoning Challenge (25-Shot)|41.64| |HellaSwag (10-Shot) |60.56| |MMLU (5-Shot) |29.89| |TruthfulQA (0-shot) |58.18| |Winogrande (5-shot) |63.54| |GSM8k (5-shot) | 6.29|