File size: 5,429 Bytes
82adb0f
 
2e709f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82adb0f
 
 
 
 
 
 
 
 
 
34b19b3
94d07d7
34b19b3
94d07d7
82adb0f
 
 
 
 
34b19b3
 
82adb0f
a630c0e
82adb0f
a630c0e
3a4a3e6
34b19b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82adb0f
2e709f7
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
---
license: apache-2.0
model-index:
- name: tigerbot-7b-sft
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 41.64
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-7b-sft
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 60.56
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-7b-sft
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 29.89
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-7b-sft
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 58.18
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-7b-sft
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 63.54
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-7b-sft
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 6.29
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TigerResearch/tigerbot-7b-sft
      name: Open LLM Leaderboard
---
<div style="width: 100%;">
    <img src="http://x-pai.algolet.com/bot/img/logo_core.png" alt="TigerBot" style="width: 20%; display: block; margin: auto;">
</div>
<p align="center">
<font face="黑体" size=5"> A cutting-edge foundation for your very own LLM. </font>
</p>
<p align="center">
   🌐 <a href="https://tigerbot.com/" target="_blank">TigerBot</a> • 🤗 <a href="https://huggingface.co/TigerResearch" target="_blank">Hugging Face</a>
</p>

## Github

https://github.com/TigerResearch/TigerBot

## Usage

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
from accelerate import infer_auto_device_map, dispatch_model
from accelerate.utils import get_balanced_memory

tokenizer = AutoTokenizer.from_pretrained("TigerResearch/tigerbot-7b-sft-v1")

model = AutoModelForCausalLM.from_pretrained("TigerResearch/tigerbot-7b-sft-v1")

max_memory = get_balanced_memory(model)
device_map = infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["BloomBlock"])
model = dispatch_model(model, device_map=device_map, offload_buffers=True)

device = torch.cuda.current_device()


tok_ins = "\n\n### Instruction:\n"
tok_res = "\n\n### Response:\n"
prompt_input = tok_ins + "{instruction}" + tok_res

input_text = "What is the next number after this list: [1, 2, 3, 5, 8, 13, 21]"
input_text = prompt_input.format_map({'instruction': input_text})

max_input_length = 512
max_generate_length = 1024
generation_kwargs = {
        "top_p": 0.95,
        "temperature": 0.8,
        "max_length": max_generate_length,
        "eos_token_id": tokenizer.eos_token_id,
        "pad_token_id": tokenizer.pad_token_id,
        "early_stopping": True,
        "no_repeat_ngram_size": 4,
    }

inputs = tokenizer(input_text, return_tensors='pt', truncation=True, max_length=max_input_length)
inputs = {k: v.to(device) for k, v in inputs.items()}
output = model.generate(**inputs, **generation_kwargs)
answer = ''
for tok_id in output[0][inputs['input_ids'].shape[1]:]:
    if tok_id != tokenizer.eos_token_id:
        answer += tokenizer.decode(tok_id)
print(answer)
```

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TigerResearch__tigerbot-7b-sft)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |43.35|
|AI2 Reasoning Challenge (25-Shot)|41.64|
|HellaSwag (10-Shot)              |60.56|
|MMLU (5-Shot)                    |29.89|
|TruthfulQA (0-shot)              |58.18|
|Winogrande (5-shot)              |63.54|
|GSM8k (5-shot)                   | 6.29|